Package ‘workflows’

October 12, 2021

Title Modeling Workflows

Version 0.2.4

Description Managing both a 'parsnip' model and a preprocessor, such as a model formula or recipe from 'recipes', can often be challenging. The goal of 'workflows' is to streamline this process by bundling the model alongside the preprocessor, all within the same object.

License MIT + file LICENSE

URL https://github.com/tidymodels/workflows,
https://workflows.tidymodels.org

BugReports https://github.com/tidymodels/workflows/issues

Depends R (>= 3.2)

Imports cli (>= 2.0.0), ellipsis (>= 0.2.0), generics (>= 0.1.0), glue, hardhat (>= 0.1.6), lifecycle (>= 1.0.0), parsnip (>= 0.1.5), rlang (>= 0.4.1), tidyselect (>= 1.1.0), vctrs (>= 0.3.6)

Suggests butcher (>= 0.1.3), covr, knitr, magrittr, modeldata (>= 0.0.2), recipes, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

Config/testthat/edition 3

Config/Needs/website discrim, dplyr, earth, ggplot2, mda, tidyr, tidyverse/tidytemplate, yardstick

NeedsCompilation no

Author Davis Vaughan [aut, cre], RStudio [cph]

Maintainer Davis Vaughan <davis@rstudio.com>

Repository CRAN

Date/Publication 2021-10-12 17:50:02 UTC
add_formula

Description

- **add_formula()** specifies the terms of the model through the usage of a formula.
- **remove_formula()** removes the formula as well as any downstream objects that might get created after the formula is used for preprocessing, such as terms. Additionally, if the model has already been fit, then the fit is removed.
- **update_formula()** first removes the formula, then replaces the previous formula with the new one. Any model that has already been fit based on this formula will need to be refit.

Usage

```r
add_formula(x, formula, ..., blueprint = NULL)
remove_formula(x)
update_formula(x, formula, ..., blueprint = NULL)
```

Arguments

- `x` A workflow
- `formula` A formula specifying the terms of the model. It is advised to not do preprocessing in the formula, and instead use a recipe if that is required.
- `...` Not used.
blueprint

A hardhat blueprint used for fine tuning the preprocessing. If NULL, hardhat::default_formula_blueprint() is used and is passed arguments that best align with the model present in the workflow.

Note that preprocessing done here is separate from preprocessing that might be done by the underlying model. For example, if a blueprint with indicators = "none" is specified, no dummy variables will be created by hardhat, but if the underlying model requires a formula interface that internally uses stats::model.matrix(), factors will still be expanded to dummy variables by the model.

Details

To fit a workflow, exactly one of add_formula(), add_recipe(), or add_variables() must be specified.

Value

x, updated with either a new or removed formula preprocessor.

Formula Handling

Note that, for different models, the formula given to add_formula() might be handled in different ways, depending on the parsnip model being used. For example, a random forest model fit using ranger would not convert any factor predictors to binary indicator variables. This is consistent with what ranger::ranger() would do, but is inconsistent with what stats::model.matrix() would do.

The documentation for parsnip models provides details about how the data given in the formula are encoded for the model if they diverge from the standard model.matrix() methodology. Our goal is to be consistent with how the underlying model package works.

How is this formula used?:

To demonstrate, the example below uses lm() to fit a model. The formula given to add_formula() is used to create the model matrix and that is what is passed to lm() with a simple formula of body_mass_g ~ .:

```r
library(parsnip)
library(workflows)
library(magrittr)
library(modeldata)
library(hardhat)

data(penguins)

lm_mod <- linear_reg() %>%
  set_engine("lm")

lm_wflow <- workflow() %>%
  add_model(lm_mod)

pre_encoded <- lm_wflow %>%
```
```r
add_formula(body_mass_g ~ species + island + bill_depth_mm) %>%
  fit(data = penguins)

pre_encoded_parsnip_fit <- pre_encoded %>%
  extract_fit_parsnip()

pre_encoded_fit <- pre_encoded_parsnip_fit$fit

# The 'lm()' formula is *not* the same as the `add_formula()` formula:
pre_encoded_fit

## Call:
## stats::lm(formula = ..y ~ ., data = data)
##
## Coefficients:
##   (Intercept) speciesChinstrap speciesGentoo islandDream islandTorgersen bill_depth_mm
##  -1009.943    1.328     2236.865     9.221   -18.433      256.913

This can affect how the results are analyzed. For example, to get sequential hypothesis tests, each individual term is tested:

anova(pre_encoded_fit)

## Analysis of Variance Table
##
## Response: ..y
##
## Df Sum Sq Mean Sq F value Pr(>F)
## speciesChinstrap 1 18642821 18642821 141.1482 <2e-16 ***
## speciesGentoo 1 128221393 128221393 970.7875 <2e-16 ***
## islandDream 1   13399    13399  0.1014  0.7503
## islandTorgersen 1   255     255  0.0019  0.9650
## bill_depth_mm 1 28051023 28051023 212.3794 <2e-16 ***
## Residuals 336 44378805  132080
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

**Overriding the default encodings:**

Users can override the model-specific encodings by using a hardhat blueprint. The blueprint can specify how factors are encoded and whether intercepts are included. As an example, if you use a formula and would like the data to be passed to a model untouched:

```r
minimal <- default_formula_blueprint(indicators = "none", intercept = FALSE)
```

```r
un_encoded <- lm_wflow %>%
 add_formula(
 body_mass_g ~ species + island + bill_depth_mm,
 blueprint = minimal
) %>%
```
fit(data = penguins)

un_encoded_parsnip_fit <- un_encoded %>%
  extract_fit_parsnip()

un_encoded_fit <- un_encoded_parsnip_fit$fit

un_encoded_fit
##
## Call:
## stats::lm(formula = ..y ~ ., data = data)
##
## Coefficients:
## (Intercept) bill_depth_mm speciesChinstrap
## -1009.943 256.913 1.328
## speciesGentoo islandDream islandTorgersen
## 2236.865 9.221 -18.433

While this looks the same, the raw columns were given to lm() and that function created the dummy variables. Because of this, the sequential ANOVA tests groups of parameters to get column-level p-values:

anova(un_encoded_fit)
## Analysis of Variance Table
##
## Response: ..y
## Df Sum Sq Mean Sq F value Pr(>F)
## bill_depth_mm 1 48840779 48840779 369.782 <2e-16 ***
## species 2 126067249 63033624 477.239 <2e-16 ***
## island 2 20864 10432 0.079 0.9241
## Residuals 336 44378805 132080
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

**Overriding the default model formula:**

Additionally, the formula passed to the underlying model can also be customized. In this case, the formula argument of add_model() can be used. To demonstrate, a spline function will be used for the bill depth:

library(splines)

custom_formula <- workflow() %>%
  add_model(
    lm_mod,
    formula = body_mass_g ~ species + island + ns(bill_depth_mm, 3)
  ) %>%
  add_formula(
    body_mass_g ~ species + island + bill_depth_mm,
    blueprint = minimal
  )
add_model

```r
)

fit(data = penguins)

custom_parsnip_fit <- custom_formula %>%
 extract_fit_parsnip()

custom_fit <- custom_parsnip_fit$fit

custom_fit

##
Call:
stats::lm(formula = body_mass_g ~ species + island + ns(bill_depth_mm,
3), data = data)
##
Coefficients:
(Intercept) speciesChinstrap speciesGentoo
1959.090 8.534 2352.137
islandDream islandTorgersen ns(bill_depth_mm, 3)1
2.425 -12.002 1476.386
ns(bill_depth_mm, 3)2 ns(bill_depth_mm, 3)3
3187.839 1686.996
```

**Altering the formula:**

Finally, when a formula is updated or removed from a fitted workflow, the corresponding model fit is removed.

```r
custom_formula_no_fit <- update_formula(custom_formula, body_mass_g ~ species)
try(extract_fit_parsnip(custom_formula_no_fit))

Error: The workflow does not have a model fit. Have you called `fit()` yet?
```

**Examples**

```r
workflow <- workflow()
workflow <- add_formula(workflow, mpg ~ cyl)
workflow

remove_formula(workflow)

update_formula(workflow, mpg ~ disp)
```

---

add_model  
*Add a model to a workflow*
add_model

Description

• add_model() adds a parsnip model to the workflow.
• remove_model() removes the model specification as well as any fitted model object. Any extra formulas are also removed.
• update_model() first removes the model then adds the new specification to the workflow.

Usage

add_model(x, spec, ..., formula = NULL)

remove_model(x)

update_model(x, spec, ..., formula = NULL)

Arguments

x A workflow.
spec A parsnip model specification.
... These dots are for future extensions and must be empty.
formula An optional formula override to specify the terms of the model. Typically, the terms are extracted from the formula or recipe preprocessing methods. However, some models (like survival and bayesian models) use the formula not to preprocess, but to specify the structure of the model. In those cases, a formula specifying the model structure must be passed unchanged into the model call itself. This argument is used for those purposes.

Details

add_model() is a required step to construct a minimal workflow.

Value

x, updated with either a new or removed model.

Indicator Variable Details

Some modeling functions in R create indicator/dummy variables from categorical data when you use a model formula, and some do not. When you specify and fit a model with a workflow(), parsnip and workflows match and reproduce the underlying behavior of the user-specified model’s computational engine.

Formula Preprocessor:

In the modeldata::Sacramento data set of real estate prices, the type variable has three levels: "Residential", "Condo", and "Multi-Family". This base workflow() contains a formula added via add_formula() to predict property price from property type, square footage, number of beds, and number of baths:
```r
set.seed(123)
library(parsnip)
library(recipes)
library(workflows)
library(modeldata)
data("Sacramento")

base_wf <- workflow() %>%
 add_formula(price ~ type + sqft + beds + baths)
This first model does create dummy/indicator variables:

lm_spec <- linear_reg() %>%
 set_engine("lm")

base_wf %>%
 add_model(lm_spec) %>%
 fit(Sacramento)
== Workflow [trained] ---
Preprocessor: Formula
Model: linear_reg()
##
-- Preprocessor ---
price ~ type + sqft + beds + baths
##
-- Model ---
Call:
stats::lm(formula = ..y ~ ., data = data)
##
Coefficients:
(Intercept) typeMulti_Family typeResidential
32919.4 -21995.8 33688.6
sqft beds baths
156.2 -29788.0 8730.0

There are **five** independent variables in the fitted model for this OLS linear regression. With this model type and engine, the factor predictor type of the real estate properties was converted to two binary predictors, typeMulti_Family and typeResidential. (The third type, for condos, does not need its own column because it is the baseline level).

This second model does not create dummy/indicator variables:

rf_spec <- rand_forest() %>%
 set_mode("regression") %>%
 set_engine("ranger")

base_wf %>%
 add_model(rf_spec) %>%
```

The code snippet provided demonstrates how to create a workflow with a linear regression model and a random forest model. It sets up the necessary libraries, loads the data, and then creates a workflow that includes adding a formula and models to it. The workflow is then trained on the dataset, and the coefficients of the linear model are printed. The random forest model is also added to the workflow.
## == Workflow [trained] ================================================
## Preprocessor: Formula
## Model: rand_forest()
##
## -- Preprocessor ------------------------------------------------------
## price ~ type + sqft + beds + baths
##
## -- Model -------------------------------------------------------------
## Ranger result
##
## Call:
## ranger::ranger(x = maybe_data_frame(x), y = y, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
##
## # Type:          Regression
## # Number of trees: 500
## # Sample size:   932
## # Number of independent variables: 4
## # Mtry:          2
## # Target node size: 5
## # Variable importance mode: none
## # Splitrule:     variance
## # OOB prediction error (MSE): 7058847504
## # R squared (OOB): 0.5894647

Note that there are four independent variables in the fitted model for this ranger random forest. With this model type and engine, indicator variables were not created for the type of real estate property being sold. Tree-based models such as random forest models can handle factor predictors directly, and don’t need any conversion to numeric binary variables.

**Recipe Preprocessor:**
When you specify a model with a `workflow()` and a recipe preprocessor via `add_recipe()`, the `recipe` controls whether dummy variables are created or not; the recipe overrides any underlying behavior from the model’s computational engine.

**Examples**

```r
library(parsnip)

lm_model <- linear_reg()
lm_model <- set_engine(lm_model, "lm")

regularized_model <- set_engine(lm_model, "glmnet")

workflow <- workflow()
workflow <- add_model(workflow, lm_model)

workflow <- add_formula(workflow, mpg ~ .)
```

remove_model(workflow)

fitted <- fit(workflow, data = mtcars)
fitted

remove_model(fitted)

remove_model(workflow)

update_model(workflow, regularized_model)
update_model(fitted, regularized_model)

add_recipe

Add a recipe to a workflow

Description

- add_recipe() specifies the terms of the model and any preprocessing that is required through the usage of a recipe.
- remove_recipe() removes the recipe as well as any downstream objects that might get created after the recipe is used for preprocessing, such as the prepped recipe. Additionally, if the model has already been fit, then the fit is removed.
- update_recipe() first removes the recipe, then replaces the previous recipe with the new one. Any model that has already been fit based on this recipe will need to be refit.

Usage

add_recipe(x, recipe, ..., blueprint = NULL)

remove_recipe(x)

update_recipe(x, recipe, ..., blueprint = NULL)

Arguments

x A workflow

recipe A recipe created using recipes::recipe()

... Not used.

blueprint A hardhat blueprint used for fine tuning the preprocessing. If NULL, hardhat::default_recipe_blueprint() is used.

Note that preprocessing done here is separate from preprocessing that might be done automatically by the underlying model.
Details
To fit a workflow, exactly one of `add_formula()`, `add_recipe()`, or `add_variables()` must be specified.

Value
`x`, updated with either a new or removed recipe preprocessor.

Examples
```r
library(recipes)
library(magrittr)

recipe <- recipe(mpg ~ cyl, mtcars) %>%
 step_log(cyl)
workflow <- workflow() %>%
 add_recipe(recipe)

workflow
remove_recipe(workflow)
update_recipe(workflow, recipe(mpg ~ cyl, mtcars))
```

Description
- `add_variables()` specifies the terms of the model through the usage of `tidyselect::select_helpers` for the outcomes and predictors.
- `remove_variables()` removes the variables. Additionally, if the model has already been fit, then the fit is removed.
- `update_variables()` first removes the variables, then replaces the previous variables with the new ones. Any model that has already been fit based on the original variables will need to be refit.
- `workflow_variables()` bundles outcomes and predictors into a single variables object, which can be supplied to `add_variables()`.

Usage
```r
add_variables(x, outcomes, predictors, ..., blueprint = NULL, variables = NULL)
remove_variables(x)
update_variables(
```
add_variables

```r
x,
outcomes,
predictors,
...,
blueprint = NULL,
variables = NULL
)

workflow_variables(outcomes, predictors)
```

**Arguments**

- **x**
  - A workflow

- **outcomes, predictors**
  - Tidyselect expressions specifying the terms of the model. outcomes is evaluated first, and then all outcome columns are removed from the data before predictors is evaluated. See `tidyselect::select_helpers` for the full range of possible ways to specify terms.

- **...**
  - Not used.

- **blueprint**
  - A hardhat blueprint used for fine tuning the preprocessing.
    - If NULL, `hardhat::default_xy_blueprints()` is used.
    - Note that preprocessing done here is separate from preprocessing that might be done by the underlying model.

- **variables**
  - An alternative specification of outcomes and predictors, useful for supplying variables programmatically.
    - If NULL, this argument is unused, and outcomes and predictors are used to specify the variables.
    - Otherwise, this must be the result of calling `workflow_variables()` to create a standalone variables object. In this case, outcomes and predictors are completely ignored.

**Details**

To fit a workflow, exactly one of `add_formula()`, `add_recipe()`, or `add_variables()` must be specified.

**Value**

- `add_variables()` returns `x` with a new variables preprocessor.
- `remove_variables()` returns `x` after resetting any model fit and removing the variables preprocessor.
- `update_variables()` returns `x` after removing the variables preprocessor, and then re-specifying it with new variables.
- `workflow_variables()` returns a `workflow_variables` object containing both the outcomes and predictors.
Examples

library(parsnip)

spec_lm <- linear_reg()
spec_lm <- set_engine(spec_lm, "lm")

workflow <- workflow()
workflow <- add_model(workflow, spec_lm)

# Add terms with tidyselect expressions.
# Outcomes are specified before predictors.
workflow1 <- add_variables(
  workflow,
  outcomes = mpg,
  predictors = c(cyl, disp)
)

workflow1 <- fit(workflow1, mtcars)
workflow1

# Removing the variables of a fit workflow will also remove the model
remove_variables(workflow1)

# Variables can also be updated
update_variables(workflow1, mpg, starts_with("d"))

# The `outcomes` are removed before the `predictors` expression
# is evaluated. This allows you to easily specify the predictors
# as "everything except the outcomes".
workflow2 <- add_variables(workflow, mpg, everything())
workflow2 <- fit(workflow2, mtcars)
extract_mold(workflow2)$predictors

# Variables can also be added from the result of a call to
# `workflow_variables()`, which creates a standalone variables object
variables <- workflow_variables(mpg, c(cyl, disp))
workflow3 <- add_variables(workflow, variables = variables)
fit(workflow3, mtcars)

augment.workflow Augment data with predictions

Description

This is a generics::augment() method for a workflow that calls augment() on the underlying parsnip model with new_data.

x must be a trained workflow, resulting in fitted parsnip model to augment() with.

new_data will be preprocessed using the preprocessor in the workflow, and that preprocessed data will be used to generate predictions. The final result will contain the original new_data with new columns containing the prediction information.
Usage

```r
S3 method for class 'workflow'
augment(x, new_data, ...)
```

Arguments

- `x`: A workflow
- `new_data`: A data frame of predictors
- `...`: Arguments passed on to methods

Value

`new_data` with new prediction specific columns.

Examples

```r
if (rlang::is_installed("broom")) {

library(parsnip)
library(magrittr)
library(modeldata)

data("attrition")

model <- logistic_reg() %>%
 set_engine("glm")

wf <- workflow() %>%
 add_model(model) %>%
 add_formula(
 Attrition ~ BusinessTravel + YearsSinceLastPromotion + OverTime
)

wf_fit <- fit(wf, attrition)

augment(wf_fit, attrition)
}
```

---

### control_workflow

**Control object for a workflow**

**Description**

`control_workflow()` holds the control parameters for a workflow.

**Usage**

`control_workflow(control_parsnip = NULL)`
Arguments
control_parsnip
A parsnip control object. If NULL, a default control argument is constructed from
parsnip::control_parsnip().

Value
A control_workflow object for tweaking the workflow fitting process.

Examples
control_workflow()

extract_workflow
Extract elements of a workflow

Description
These functions extract various elements from a workflow object. If they do not exist yet, an error
is thrown.

• extract_preprocessor() returns the formula, recipe, or variable expressions used for pre-
  processing.
• extract_spec_parsnip() returns the parsnip model specification.
• extract_fit_parsnip() returns the parsnip model fit object.
• extract_fit_engine() returns the engine specific fit embedded within a parsnip model fit.
  For example, when using parsnip::linear_reg() with the "lm" engine, this returns the
  underlying lm object.
• extract_mold() returns the preprocessed "mold" object returned from hardhat::mold(). It
  contains information about the preprocessing, including either the prepped recipe, the formula
  terms object, or variable selectors.
• extract_recipe() returns the recipe. The estimated argument specifies whether the fitted
  or original recipe is returned.

Usage
## S3 method for class 'workflow'
extract_spec_parsnip(x, ...)

## S3 method for class 'workflow'
exaxt_recipe(x, ..., estimated = TRUE)

## S3 method for class 'workflow'
extract_fit_parsnip(x, ...)

## S3 method for class 'workflow'
### Arguments

- **x**: A workflow
- **...**: Not currently used.

- **estimated**: A logical for whether the original (unfit) recipe or the fitted recipe should be returned. This argument should be named.

### Details

Extracting the underlying engine fit can be helpful for describing the model (via `print()`, `summary()`, `plot()`, etc.) or for variable importance/explainers.

However, users should not invoke the `predict()` method on an extracted model. There may be preprocessing operations that `workflows` has executed on the data prior to giving it to the model. Bypassing these can lead to errors or silently generating incorrect predictions.

**Good:**

```r
workflow_fit %>% predict(new_data)
```

**Bad:**

```r
workflow_fit %>% extract_fit_engine() %>% predict(new_data)
or
workflow_fit %>% extract_fit_parsnip() %>% predict(new_data)
```

### Value

The extracted value from the object, `x`, as described in the description section.

### Examples

```r
library(parsnip)
library(recipes)
library(magrittr)

model <- linear_reg() %>%
 set_engine("lm")

recipe <- recipe(mpg ~ cyl + disp, mtcars) %>%
 step_log(disp)

base_wf <- workflow() %>%
```
```r
add_model(model)

recipe_wf <- add_recipe(base_wf, recipe)
formula_wf <- add_formula(base_wf, mpg ~ cyl + log(disp))
variable_wf <- add_variables(base_wf, mpg, c(cyl, disp))

fit_recipe_wf <- fit(recipe_wf, mtcars)
fit_formula_wf <- fit(formula_wf, mtcars)

The preprocessor is a recipe, formula, or a list holding the
tidyselect expressions identifying the outcomes/predictors
extract_preprocessor(recipe_wf)
extract_preprocessor(formula_wf)
extract_preprocessor(variable_wf)

The `spec` is the parsnip spec before it has been fit.
The `fit` is the fitted parsnip model.
eextract_spec_parsnip(fit_formula_wf)
eextract_fit_parsnip(fit_formula_wf)
eextract_fit_engine(fit_formula_wf)

The mold is returned from `hardhat::mold()`, and contains the
predictors, outcomes, and information about the preprocessing
for use on new data at `predict()` time.
eextract_mold(fit_recipe_wf)

A useful shortcut is to extract the fitted recipe from the workflow
eextract_recipe(fit_recipe_wf)

That is identical to
identical(
eextract_mold(fit_recipe_wf)$blueprint$recipe,
eextract_recipe(fit_recipe_wf)
)
```

---

**fit-workflow**

_Fit a workflow object_

### Description

Fitting a workflow currently involves two main steps:

- Preprocessing the data using a formula preprocessor, or by calling `recipes::prep()` on a recipe.
- Fitting the underlying parsnip model using `parsnip::fit.model_spec()`.

### Usage

```r
S3 method for class 'workflow'
fit(object, data, ..., control = control_workflow())
```
Arguments

- **object**: A workflow
- **data**: A data frame of predictors and outcomes to use when fitting the workflow
- **...**: Not used
- **control**: A `control_workflow()` object

Details

In the future, there will also be *postprocessing* steps that can be added after the model has been fit.

Value

The workflow object, updated with a fit `parsnip` model in the `object$fit$fit` slot.

Indicator Variable Details

Some modeling functions in R create indicator/dummy variables from categorical data when you use a model formula, and some do not. When you specify and fit a model with a `workflow()`, `parsnip` and workflows match and reproduce the underlying behavior of the user-specified model’s computational engine.

**Formula Preprocessor:**

In the `modeldata::Sacramento` data set of real estate prices, the `type` variable has three levels: "Residential", "Condo", and "Multi-Family". This base `workflow()` contains a formula added via `add_formula()` to predict property price from property type, square footage, number of beds, and number of baths:

```r
set.seed(123)
library(parsnip)
library(recipes)
library(workflows)
library(modeldata)
data("Sacramento")

base_wf <- workflow() %>%
 add_formula(price ~ type + sqft + beds + baths)
```

This first model does create dummy/indicator variables:

```r
lm_spec <- linear_reg() %>%
 set_engine("lm")

base_wf %>%
 add_model(lm_spec) %>%
 fit(Sacramento)
```
There are five independent variables in the fitted model for this OLS linear regression. With this model type and engine, the factor predictor type of the real estate properties was converted to two binary predictors, typeMulti_Family and typeResidential. (The third type, for condos, does not need its own column because it is the baseline level).

This second model does not create dummy/indicator variables:

```r
rf_spec <- rand_forest() %>%
 set_mode("regression") %>%
 set_engine("ranger")

base_wf %>%
 add_model(rf_spec) %>%
 fit(Sacramento)
```

```r
== Workflow [trained] ==
Preprocessor: Formula
Model: rand_forest()
##
-- Preprocessor --
price ~ type + sqft + beds + baths
-- Model ---
##
Call:
ranger::ranger(x = maybe_data_frame(x), y = y, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
##
Type: Regression
Number of trees: 500
Sample size: 932
Number of independent variables: 4
Mtry: 2
```
## Target node size: 5
## Variable importance mode: none
## Splitrule: variance
## OOB prediction error (MSE): 7058847504
## R squared (OOB): 0.5894647

Note that there are four independent variables in the fitted model for this ranger random forest. With this model type and engine, indicator variables were not created for the type of real estate property being sold. Tree-based models such as random forest models can handle factor predictors directly, and don’t need any conversion to numeric binary variables.

**Recipe Preprocessor:**
When you specify a model with a workflow() and a recipe preprocessor via add_recipe(), the recipe controls whether dummy variables are created or not; the recipe overrides any underlying behavior from the model’s computational engine.

**Examples**
```
library(parsnip)
library(recipes)
library(magrittr)

model <- linear_reg() %>%
 set_engine("lm")

base_wf <- workflow() %>%
 add_model(model)

formula_wf <- base_wf %>%
 add_formula(mpg ~ cyl + log(disp))

fit(formula_wf, mtcars)

recipe <- recipe(mpg ~ cyl + disp, mtcars) %>%
 step_log(disp)

recipe_wf <- base_wf %>%
 add_recipe(recipe)

fit(recipe_wf, mtcars)
```

---

### glance.workflow

**Glance at a workflow model**

**Description**

This is a generics::glance() method for a workflow that calls glance() on the underlying parsnip model.

x must be a trained workflow, resulting in fitted parsnip model to glance() at.
is_trained_workflow

Usage

## S3 method for class 'workflow'
glance(x, ...)

Arguments

x             A workflow
...           Arguments passed on to methods

Examples

```r
if (rlang::is_installed("broom")) {
 library(parsnip)
 library(magrittr)
 library(modeldata)
 data("attrition")
 model <- logistic_reg() %>%
 set_engine("glm")
 wf <- workflow() %>%
 add_model(model) %>%
 add_formula(
 Attrition ~ BusinessTravel + YearsSinceLastPromotion + OverTime
)
 # Workflow must be trained to call `glance()`
 try(glance(wf))
 wf_fit <- fit(wf, attrition)
 glance(wf_fit)
}
```

is_trained_workflow    Determine if a workflow has been trained

Description

A trained workflow is one that has gone through `fit()`, which preprocesses the underlying data, and fits the parsnip model.

Usage

`is_trained_workflow(x)`
predict-workflow

Arguments

x  A workflow.

Value

A single logical indicating if the workflow has been trained or not.

Examples

library(parsnip)
library(recipes)
library(magrittr)

rec <- recipe(mpg ~ cyl, mtcars)

mod <- linear_reg()
mod <- set_engine(mod, "lm")

wf <- workflow() %>%
  add_recipe(rec) %>%
  add_model(mod)

# Before any preprocessing or model fitting has been done
is_trained_workflow(wf)

wf <- fit(wf, mtcars)

# After all preprocessing and model fitting
is_trained_workflow(wf)

Description

This is the predict() method for a fit workflow object. The nice thing about predicting from a workflow is that it will:

- Preprocess new_data using the preprocessing method specified when the workflow was created and fit. This is accomplished using \texttt{hardhat::forge()}, which will apply any formula preprocessing or call \texttt{recipes::bake()} if a recipe was supplied.
- Call \texttt{parsnip::predict.model_fit()} for you using the underlying fit parsnip model.

Usage

## S3 method for class 'workflow'
predict(object, new_data, type = NULL, opts = list(), ...)
Arguments

- **object**: A workflow that has been fit by `fit.workflow()`
- **new_data**: A data frame containing the new predictors to preprocess and predict on
- **type**: A single character value or NULL. Possible values are "numeric", "class", "prob", "conf_int", "pred_int", "quantile", "time", "hazard", "survival", or "raw". When NULL, `predict()` will choose an appropriate value based on the model's mode.
- **opts**: A list of optional arguments to the underlying predict function that will be used when type = "raw". The list should not include options for the model object or the new data being predicted.

Value

A data frame of model predictions, with as many rows as `new_data` has.

Examples

```r
library(parsnip)
library(recipes)
library(magrittr)

training <- mtcars[1:20,]
testing <- mtcars[21:32,]

model <- linear_reg() %>%
 set_engine("lm")
workflow <- workflow() %>%
 add_model(model)

recipe <- recipe(mpg ~ cyl + disp, training) %>%
 step_log(disp)
workflow <- add_recipe(workflow, recipe)
fit_workflow <- fit(workflow, training)

This will automatically `bake()` the recipe on `testing`,
```
# applying the log step to `disp`, and then fit the regression.
predict(fit_workflow, testing)

tidy.workflow  
* Tidy a workflow *

**Description**
This is a `generics::tidy()` method for a workflow that calls `tidy()` on either the underlying parsnip model or the recipe, depending on the value of `what`. 

`x` must be a fitted workflow, resulting in fitted parsnip model or prepped recipe that you want to tidy.

**Usage**

```
S3 method for class 'workflow'
tidy(x, what = "model", ...)
```

**Arguments**

- `x`  
  A workflow

- `what`  
  A single string. Either "model" or "recipe" to select which part of the workflow to tidy. Defaults to tidying the model.

- `...`  
  Arguments passed on to methods

**Details**

To tidy the unprepped recipe, use `extract_preprocessor()` and `tidy()` that directly.

**workflow**  
* Create a workflow *

**Description**

A workflow is a container object that aggregates information required to fit and predict from a model. This information might be a recipe used in preprocessing, specified through `add_recipe()`, or the model specification to fit, specified through `add_model()`.

The preprocessor and spec arguments allow you add components to a workflow quickly, without having to go through the add_*() functions, such as `add_recipe()` or `add_model()`. However, if you need to control any of the optional arguments to those functions, such as the blueprint or the model formula, then you should use the add_*() functions directly instead.

**Usage**

```
workflow(preprocessor = NULL, spec = NULL)
```
Arguments

**preprocessor**
An optional preprocessor to add to the workflow. One of:

- A formula, passed on to `add_formula()`.
- A recipe, passed on to `add_recipe()`.
- A `workflow_variables()` object, passed on to `add_variables()`.

**spec**
An optional parsnip model specification to add to the workflow. Passed on to `add_model()`.

Value

A new workflow object.

Indicator Variable Details

Some modeling functions in R create indicator/dummy variables from categorical data when you use a model formula, and some do not. When you specify and fit a model with a `workflow()`, parsnip and workflows match and reproduce the underlying behavior of the user-specified model’s computational engine.

**Formula Preprocessor:**
In the `modeldata::Sacramento` data set of real estate prices, the `type` variable has three levels: "Residential", "Condo", and "Multi-Family". This base `workflow()` contains a formula added via `add_formula()` to predict property price from property type, square footage, number of beds, and number of baths:

```r
data("Sacramento")
base_wf <- workflow() %>%
 add_formula(price ~ type + sqft + beds + baths)
```

This first model does create dummy/indicator variables:

```r
lm_spec <- linear_reg() %>%
 set_engine("lm")
```

```r
base_wf %>%
 add_model(lm_spec) %>%
 fit(Sacramento)
```

```r
#== Workflow [trained] ==
Preprocessor: Formula
Model: linear_reg()
#==
```
There are five independent variables in the fitted model for this OLS linear regression. With this model type and engine, the factor predictor type of the real estate properties was converted to two binary predictors, `typeMulti_Family` and `typeResidential`. (The third type, for condos, does not need its own column because it is the baseline level).

This second model does not create dummy/indicator variables:

```r
rf_spec <- rand_forest() %>%
 set_mode("regression") %>%
 set_engine("ranger")

base_wf %>%
 add_model(rf_spec) %>%
 fit(Sacramento)
```

---

```
-- Preprocessor --
price ~ type + sqft + beds + baths
##
-- Model ---
##
Call:
stats::lm(formula = ..y ~ ., data = data)
##
Coefficients:
(Intercept) typeMulti_Family typeResidential
32919.4 -21995.8 33688.6
sqft beds baths
156.2 -29788.0 8730.0
```

---

```
There are five independent variables in the fitted model for this OLS linear regression. With this model type and engine, the factor predictor type of the real estate properties was converted to two binary predictors, `typeMulti_Family` and `typeResidential`. (The third type, for condos, does not need its own column because it is the baseline level).

This second model does not create dummy/indicator variables:

```r
rf_spec <- rand_forest() %>%
  set_mode("regression") %>%
  set_engine("ranger")

base_wf %>%
  add_model(rf_spec) %>%
  fit(Sacramento)
```

```
## == Workflow [trained] ================================================
## Preprocessor: Formula
## Model: rand_forest()

## -- Preprocessor ------------------------------------------------------
## price ~ type + sqft + beds + baths

## -- Model -------------------------------------------------------------
## Ranger result

## Call:
## ranger::ranger(x = maybe_data_frame(x), y = y, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
##
## Type: Regression
## Number of trees: 500
## Sample size: 932
## Number of independent variables: 4
## Mtry: 2
## Target node size: 5
## Variable importance mode: none
## Splitrule: variance
## OOB prediction error (MSE): 7058847504
```
R squared (OOB): 0.5894647

Note that there are **four** independent variables in the fitted model for this ranger random forest. With this model type and engine, indicator variables were not created for the type of real estate property being sold. Tree-based models such as random forest models can handle factor predictors directly, and don’t need any conversion to numeric binary variables.

Recipe Preprocessor:

When you specify a model with a `workflow()` and a recipe preprocessor via `add_recipe()`, the `recipe` controls whether dummy variables are created or not; the recipe overrides any underlying behavior from the model’s computational engine.

Examples

```r
library(parsnip)
library(recipes)
library(magrittr)
library(modeldata)

data("attrition")

model <- logistic_reg() %>%
  set_engine("glm")

formula <- Attrition ~ BusinessTravel + YearsSinceLastPromotion + OverTime

wf_formula <- workflow(formula, model)

fit(wf_formula, attrition)

recipe <- recipe(Attrition ~ ., attrition) %>%
  step_dummy(all_nominal(), -Attrition) %>%
  step_corr(all_predictors(), threshold = 0.8)

wf_recipe <- workflow(recipe, model)

fit(wf_recipe, attrition)

variables <- workflow_variables(Attrition,
  c(BusinessTravel, YearsSinceLastPromotion, OverTime)
)

wf_variables <- workflow(variables, model)

fit(wf_variables, attrition)
```
Butcher methods for a workflow

Description

These methods allow you to use the butcher package to reduce the size of a workflow. After calling `butcher::butcher()` on a workflow, the only guarantee is that you will still be able to `predict()` from that workflow. Other functions may not work as expected.

Usage

```r
axe_call.workflow(x, verbose = FALSE, ...)
axe_ctrl.workflow(x, verbose = FALSE, ...)
axe_data.workflow(x, verbose = FALSE, ...)
axe_env.workflow(x, verbose = FALSE, ...)
axe_fitted.workflow(x, verbose = FALSE, ...)
```

Arguments

- `x` A workflow.
- `verbose` Should information be printed about how much memory is freed from butchering?
- `...` Extra arguments possibly used by underlying methods.
Index

add_formula, 2
add_formula(), 3, 7, 11, 12, 18, 25
add_model, 6
add_model(), 24, 25
add_recipe, 10
add_recipe(), 3, 9, 11, 12, 20, 24, 25, 27
add_variables, 11
add_variables(), 3, 11, 12, 25
augment.workflow, 13
axe_call.workflow(workflow-butcher), 28
axe_ctrl.workflow(workflow-butcher), 28
axe_data.workflow(workflow-butcher), 28
axe_env.workflow(workflow-butcher), 28
axe_fitted.workflow(workflow-butcher), 28
control_workflow, 14
control_workflow(), 18
extract-workflow, 15
extract_fit_engine.workflow(extract-workflow), 15
extract_fit_parsnip.workflow(extract-workflow), 15
extract_mold.workflow(extract-workflow), 15
extract_preprocessor(), 24
extract_preprocessor.workflow(extract-workflow), 15
extract_recipe_workflow(extract-workflow), 15
extract_spec_parsnip.workflow(extract-workflow), 15
fit(), 21
fit-workflow, 17
fit.workflow(fit-workflow), 17
fit.workflow(), 23
generics::augment(), 13
generics::glance(), 20
generics::tidy(), 24
glance.workflow, 20
hardhat::default_formula_blueprint(), 3
hardhat::default_recipe_blueprint(), 10
hardhat::default_xy_blueprint(), 12
hardhat::forge(), 22
hardhat::mold(), 15
is_trained_workflow, 21
moddata::Sacramento, 7, 18, 25
parsnip::control_parsnip(), 15
parsnip::fit.model_spec(), 17
parsnip::linear_reg(), 15
parsnip::predict.model_fit(), 22
predict-workflow, 22
predict.workflow(predict-workflow), 22
recipes::bake(), 22
recipes::prep(), 17
recipes::recipe(), 10
remove_formula(add_formula), 2
remove_model(add_model), 6
remove_recipe(add_recipe), 10
remove_variables(add_variables), 11
stats::model.matrix(), 3
tidy.workflow, 24
tidyselect::select_helpers, 11, 12
update_formula(add_formula), 2
update_model(add_model), 6
update_recipe(add_recipe), 10
update_variables(add_variables), 11
workflow, 24
workflow-butcher, 28
workflow_variables (add_variables), 11
workflow_variables (), 25