Package ‘wowa’

February 5, 2021

Type Package
Title Weighted Ordered Weighted Average
Version 1.0.1
Date 2021-02-01
Maintainer Gleb Beliakov <gleb@deakin.edu.au>
Author Gleb Beliakov [aut, cre],
 Daniela Calderon [aut]
Description Introduce weights into Ordered Weighted Averages and extend bivariate means based on n-
 ary tree construction. Please refer to the following:
 G. Beliakov, J.J. Dujmovic (2016) <doi:10.1016/j.ins.2015.10.040>,
License LGPL-3
LazyData TRUE
Imports Rcpp (>= 1.0.0)
LinkingTo Rcpp
RoxygenNote 5.0.1
NeedsCompilation yes
Copyright Gleb Beliakov
Repository CRAN
Date/Publication 2021-02-05 09:40:02 UTC

R topics documented:

wowa ... 2
wowa.ImplicitWOWA .. 3
wowa.OWA ... 3
wowa.WAM ... 4
wowa.WAn ... 5
Description

Various weighted multivariate extensions of bivariate and OWA functions, including implicit, quantifier-based and binary tree based WOWA.

Usage

\texttt{wowa()}

Details

Lists the functions implemented in this package.

Value

No return value, called for printing only.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

\texttt{wowa()}

wowa.ImplicitWOWA

Implicit Weighted OWA Computation Function

Description

Function for Calculating implicit Weighted OWA function

Usage

```
wowa.ImplicitWOWA(x, p, w, n)
```

Arguments

- `x`: The vector of inputs
- `p`: The weights of inputs `x`
- `w`: The OWA weightings vector
- `n`: Dimension of the vector `x`

Value

- `output`: The value of the Implicit Weighted OWA

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

```
n <- 4
example <- wowa.ImplicitWOWA(c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15), c(0.4,0.35,0.2,0.05), n)
example
```

wowa.OWA

Ordered weighted average function

Description

Function for computing the ordered weighted averages

Usage

```
wowa.OWA(n, x, w)
```
Arguments

- `n` Dimension of the vector `x`
- `x` The vector of inputs
- `w` The OWA weights

Value

- `output` The value of the ordered weighted average.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

```r
n <- 4
wowa.OWA(n, c(0.3, 0.4, 0.8, 0.2), c(0.4, 0.35, 0.2, 0.05))
```

wowa.WAM

WAM computation

Description

Function for calculating the Weighted Arithmetic Mean

Usage

```r
wowa.WAM(n, x, w)
```

Arguments

- `n` Dimension of the array `x`
- `x` The vector of inputs
- `w` The vector of weights

Value

- `output` The value of the WAM function

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

```r
n <- 4
wowa.WAM(n, c(0.3, 0.4, 0.8, 0.2), c(0.3, 0.25, 0.3, 0.15))
```
wowa.WAn

Extension of binary averaging

Description

Function for calculating a binary tree multivariate extension of a binary averaging function

Usage

wowa.WAn(x, w, n, Fn, L)

Arguments

x
Vector of inputs
w
The weightings vector
n
Dimension of the array x (and w)
Fn
Bivariate symmetric mean that is extended to n arguments
L
The number of levels of the binary tree (see docs)

Value

output
The output is Weighted n-variate mean extending Fn

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

Fn <- function(x, y) { # just a simple arithmetic mean,
but can be more complex functions (eg heronian, logarithmic means)
out <- (x+y)/2
return(out)
}

n <- 4
example <- wowa.WAn(c(0.3, 0.4, 0.8, 0.2), c(0.4, 0.3, 0.2, 0.1), n, Fn, 10)
example
wowa.weightedOWAQuantifier

WOWA value computation Function

Description

Function for calculating the value of the quantifier-based WOWA function

Usage

```r
wowa.weightedOWAQuantifier(x, p, w, n, spl)
```

Arguments

- **x**
 - The vector of inputs
- **p**
 - The weights of inputs x
- **w**
 - The OWA weightings vector
- **n**
 - The dimension of the array x
- **spl**
 - A structure that keeps the spline knots and coefficients computed in weightedOWAQuantifierBuild function

Value

- **output**
 - The output is quantifier-based WOWA value

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

```r
n <- 4
pweights=c(0.3, 0.25, 0.3, 0.15);
wweights=c(0.4, 0.35, 0.2, 0.05);
tempspline <- wowa.weightedOWAQuantifierBuild(pweights, wweights, n)
wowa.weightedOWAQuantifier(c(0.3, 0.4, 0.8, 0.2), pweights, wweights, n, tempspline)
```
wowa.weightedOWAQuantifierBuild

RIM quantifier of the Weighted OWA function

Description

Function for building the RIM quantifier of the Weighted OWA function

Usage

wowa.weightedOWAQuantifierBuild(p, w, n)

Arguments

p The weights of inputs x
w The OWA weightings vector
n The dimension of the vectors p, w

Value

output A structure which has fields: spl, which keeps the spline knots and coefficients for later use in weightedOWAQuantifier, and Tnum, the number of knots in the monotone spline

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

n <- 4
pweights=c(0.3,0.25,0.3,0.15);
wweights=c(0.4,0.35,0.2,0.05);
tspline <- wowa.weightedOWAQuantifierBuild(pweights, wweights, n)
wowa.weightedOWAQuantifier(c(0.3,0.4,0.8,0.2), pweights, wweights, n, tspline)

wowa.WOWATree

Weighted extension of the OWA function

Description

Function for extending order weighted averages and other multivariate symmetric functions

Usage

wowa.WOWATree(x, p, w, n, Fn, L)
Arguments

x The vector of inputs
p The weights of inputs x
w The OWA weightings vector
n The dimension of the vector x
Fn Base n-variate symmetric function defined in R
L The number of levels of the n-ary tree (see docs)

Value

output The output is the weighted ordered weighted average.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

Examples

```r
Fn <- function(n, x, w) {
  out <- 0.0
  for(i in 1:n) out <- out + x[i] * w[i];
  #print(out)
  return(out)
}

n <- 4
example <- wowa.WOWATree(c(0.3, 0.4, 0.8, 0.2),
                          c(0.3, 0.25, 0.3, 0.15),
                          c(0.4, 0.35, 0.2, 0.05), n, Fn, 10)
example
```
Index

* Implicit WOWA
 wowa.ImplicitWOWA, 3
* OWA
 wowa.OWA, 3
* WAM
 wowa.WAM, 4
* WAn
 wowa.WAn, 5
* WOWATree
 wowa.WOWATree, 7
* WOWA
 wowa, 2
 wowa.ImplicitWOWA, 3
 wowa.WAM, 4
 wowa.WAn, 5
 wowa.weightedOWAQuantifier, 6
 wowa.weightedOWAQuantifierBuild, 7
* weightedOWAQuantifier
 wowa.weightedOWAQuantifier, 6
 wowa.weightedOWAQuantifierBuild, 7
* weightedf
 wowa.WOWATree, 7
* wowa
 wowa, 2
 wowa.ImplicitWOWA, 3
 wowa.OWA, 3
 wowa.WAM, 4
 wowa.WAn, 5
 wowa.weightedOWAQuantifier, 6
 wowa.weightedOWAQuantifierBuild, 7
 wowa.WOWATree, 7