Package ‘wrappedtools’

September 6, 2021

Type Package

Title Useful Wrappers Around Commonly Used Functions

Description The main functionalities of ‘wrappedtools’ are:
 adding backticks to variable names; rounding to desired precision
 with special case for p-values;
 selecting columns based on pattern and storing their position, name,
 and backtickled name; computing and formatting of descriptive statistics
 (e.g. mean±SD), comparing groups and creating publication-ready tables with
 descriptive statistics and p-values; creating specialized plots for
 correlation matrices. Functions were mainly written for my own daily work or
 teaching, but may be of use to others as well.

Version 0.7.9

Date 2021-09-06

Maintainer Andreas Busjahn <andreas@busjahn.net>

License GPL-3

Encoding UTF-8

Imports stats, boot, knitr, coin, utils, dplyr, forcats, purrr, glue,
 rlang, stringr, magrittr, ggplot2, tibble, tidyr, kableExtra

Depends R (>= 3.5), tidyverse

RoxygenNote 7.1.1

LazyData true

VignetteBuilder knitr

Suggests rmarkdown, testthat

NeedsCompilation no

Author Andreas Busjahn [cre, aut] (<https://orcid.org/0000-0001-9650-6919>)

Repository CRAN

Date/Publication 2021-09-06 14:30:02 UTC
R topics documented:

bt ... 2
cat_desc_stats 3
cn .. 4
compare2numvars 5
compare2qualvars 6
compare_n_numvars 7
compare_n_qualvars 8
cortestR ... 10
faketrial ... 11
FindVars ... 11
formatP .. 12
ggcormat .. 13
glmCI .. 14
ksnormal .. 15
logrange_1 .. 15
markSign .. 17
meansd ... 17
meanse ... 18
median_cl_boot 19
median_quart 19
pairwise_fisher_test 21
pairwise_ordcat_test 22
pairwise_t_test 23
pairwise_wilcox_test 24
pdf_kable .. 25
print_kable 26
roundR ... 26
SEM .. 27
se_median ... 28
tab.search ... 28
t_var_test ... 29
var_coeff ... 29

Index

31

bt .. Add backticks to names or remove them

Description

bt adds leading and trailing backticks to make illegal variable names usable. Optionally removes them.

Usage

bt(x, remove = FALSE)
Arguments

- `x` Names to add backtick to.
- `remove` Option to remove existing backticks, default=FALSE.

Value

Character vector with backticks added.

Examples

```r
bt('name 1')
```

cat_desc_stats

Compute absolute and relative frequencies.

Description

`cat_desc_stats` computes absolute and relative frequencies for categorical data with a number of formatting options.

Usage

```r
cat_desc_stats(
  quelle,
  separator = " ",
  return_level = TRUE,
  ndigit = 0,
  groupvar = NULL,
  singleline = FALSE,
  percent = TRUE,
  prettynum = FALSE,
  .german = FALSE
)
```

Arguments

- `quelle` Data for computation.
- `separator` delimiter between results per level, preset as ' '.
- `return_level` Should levels be reported?
- `ndigit` Digits for rounding of relative frequencies.
- `groupvar` Optional grouping factor.
- `singleline` Put all group levels in a single line?
- `percent` Logical, add percent-symbol after relative frequencies?
- `prettynum` Logical, apply prettyNum to results?
- `german` logical, should "," and ".," be used as bigmark and decimal? Sets prettynum to TRUE.
Value

Structure depends on parameter return_level: if FALSE than a tibble with descriptives, otherwise a list with two tibbles with levels of factor and descriptives. If parameter singleline is FALSE (default), results for each factor level is reported in a separate line, otherwise they are pasted. Number of columns for result tibbles is one or number of levels of the additional grouping variable.

Examples

```r
cat_desc_stats(mtcars$gear)
cat_desc_stats(mtcars$gear, return_level = FALSE)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am, singleline = TRUE)
```

cn

Shortcut for colnames()

Description

cn lists column names, by default for variable rawdata.

Usage

cn(data = rawdata)

Arguments

data Data structure to read column names from.

Value

Character vector with column names.

Examples

cn(mtcars)
compare2numvars

Comparison for columns of numbers for 2 groups

Description

`compare2numvars` computes either `t_var_test` or `wilcox.test`, depending on parameter `gaussian`. Descriptive statistics, depending on distribution, are reported as well.

Usage

```r
compare2numvars(
  data,
  dep_vars,
  indep_var,
  gaussian,
  round_p = 3,
  round_desc = 2,
  range = FALSE,
  rangesep = " ",
  pretext = FALSE,
  mark = FALSE,
  n = FALSE,
  add_n = FALSE
)
```

Arguments

- `data`
 name of dataset (tibble/data.frame) to analyze.

- `dep_vars`
 vector of column names for independent variables.

- `indep_var`
 name of grouping variable, has to translate to 2 groups. If more levels are encountered, an error is produced.

- `gaussian`
 logical specifying normal or ordinal values.

- `round_p`
 level for rounding p-value.

- `round_desc`
 number of significant digits for rounding of descriptive stats.

- `range`
 include min/max?

- `rangesep`
 text between statistics and range or other elements.

- `pretext`
 for function `formatP`.

- `mark`
 for function `formatP`.

- `n`
 create columns for n per group?

- `add_n`
 add n to descriptive statistics?

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of `dep_vars`.
Examples

Assuming Normal distribution:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = TRUE
)
Ordinal scale:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = FALSE
)
If dependent variable has more than 2 levels, consider fct_lump:
mtcars %>% mutate(gear=factor(gear) %>% fct_lump_n(n=1)) %>%
 compare2numvars(dep_vars="wt",indep_var="gear",gaussian=TRUE)

compare2qualvars

Comparison for columns of factors for 2 groups

Description

compare2qualvars computes fisher.test with simulated p-value and descriptive statistics for a group of categorical dependent variables.

Usage

compare2qualvars(
 data,
 dep_vars,
 indep_var,
 round_p = 3,
 round_desc = 2,
 pretext = FALSE,
 mark = FALSE,
 singleline = FALSE,
 spacer = " ",
 linebreak = "\n"
)

Arguments

data name of data set (tibble/data.frame) to analyze.
dep_vars vector of column names for dependent variables.
indep_var name of grouping variable, has to translate to 2 groups.
round_p level for rounding p-value.
round_desc number of significant digits for rounding of descriptive stats.
compare_n_numvars

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pretext</td>
<td>for function <code>formatP</code></td>
</tr>
<tr>
<td>mark</td>
<td>for function <code>formatP</code></td>
</tr>
<tr>
<td>singleline</td>
<td>Put all group levels in a single line?</td>
</tr>
<tr>
<td>spacer</td>
<td>Text element to indent levels and fill empty cells, defaults to " "</td>
</tr>
<tr>
<td>linebreak</td>
<td>place holder for newline</td>
</tr>
</tbody>
</table>

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep-vars.

Examples

```r
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " 
)
```

```r
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ", singleline = TRUE
)
```

compare_n_numvars *Comparison for columns of Gaussian measures for n groups*

Description

Comparison for columns of Gaussian measures for n groups

Usage

```r
compare_n_numvars(
  .data = rawdata,
  dep_vars, indep_var,
  round_desc = 2, range = FALSE,
  rangesep = " ", pretext = FALSE,
  mark = FALSE, round_p = 3,
  add_n = FALSE
)
```
Arguments

.data
name of dataset (tibble/data.frame) to analyze, defaults to rawdata.
dep_vars
vector of column names.
indep_var
name of grouping variable.
round_desc
number of significant digits for rounding of descriptive stats.
rangesep
text between statistics and range or other elements.
pretext, mark
for function formatP.
round_p
level for rounding p-value.
add_n
add n to descriptive statistics?

Value

A list with elements "results": tibble with descriptive statistics, p-value from ANOVA, p-values for pairwise comparisons, significance indicators, and descriptives pasted with significance. "raw": nested list with output from all underlying analyses.

Examples

Usually, only the result table is relevant:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "qsec"),
 indep_var = "cyl"
)$results

For a report, result columns may be filtered as needed:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "qsec"),
 indep_var = "cyl"
)$results %>%
dplyr::select(Variable, `cyl 4 fn`:`cyl 8 fn`, pANOVA)
Usage

```r
compare_n_qualvars(
  data,
  dep_vars,
  indep_var,
  round_p = 3,
  round_desc = 2,
  pretext = FALSE,
  mark = FALSE,
  singleline = FALSE,
  spacer = " \n ",
  linebreak = " \n ",
  prettynum = FALSE
)
```

Arguments

- `data`: name of data set (tibble/data.frame) to analyze.
- `dep_vars`: vector of column names.
- `indep_var`: name of grouping variable, has to translate to 2 groups.
- `round_p`: level for rounding p-value.
- `round_desc`: number of significant digits for rounding of descriptive stats
- `pretext`: for function `formatP`
- `mark`: for function `formatP`
- `singleline`: Put all group levels in a single line?
- `spacer`: Text element to indent levels, defaults to " ".
- `linebreak`: place holder for newline.
- `prettynum`: Apply prettyNum to results?

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of `dep_vars`.

Examples

```r
# Separate lines for each factor level:
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  spacer = " 
"
)

# All levels in one row but with linebreaks:
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE
)
# All levels in one row, separated by ";":
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE, linebreak = ";"
)

---

cortestR

Correlations with significance

Description

cortestR computes correlations and their significance level based on cor.test. Coefficients and p-values may be combined or reported separately.

Usage

cortestR(
  cordata,
  method = "pearson",
  digits = 3,
  digits_p = 3,
  sign_symbol = TRUE,
  split = FALSE,
  space = ""
)

Arguments

- **cordata**: data frame or matrix with rawdata.
- **method**: as in cor.test.
- **digits**: rounding level for estimate.
- **digits_p**: rounding level for p value.
- **sign_symbol**: If true, use significance indicator instead of p-value.
- **split**: logical, report correlation and p combined (default) or split in list.
- **space**: character to fill empty upper triangle.

Value

Depending on parameters split and sign_symbol, either a single data frame with coefficient and p-values or significance symbols or a list with two data frames.

Examples

# with defaults
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = FALSE, sign_symbol = TRUE)
# separate coefficients and p-values

cortestR(mtcars[, c("wt", "mpg", "qsec")], split = TRUE, sign_symbol = FALSE)
**faketrial**

*Results from a simulated clinical trial with interaction effects.*

**Description**

A dataset containing physiological data, biomarkers, and categorical data.

**Usage**

faketrial

**Format**

A tibble with 300 rows and 24 variables:

- **Sex**  Sex of animal, factor with levels 'female', 'male'
- **Agegroup**  Factor with levels 'young', 'middle', 'old'
- **Treatment**  Factor with levels 'sham', 'OP'
- **HR**  Heart rate
- **sysRR, diaRR**  Systolic and diastolic blood pressure
- **Med xxx**  Pseudo-medications, factors with levels 'y', 'n'
- **Biomarker x units**  Biomarkers with log-normal distribution

**FindVars**

*Find numeric index and names of columns based on patterns*

**Description**

FindVars looks up colnames (by default for data-frame rawdata) based on parts of names, using regular expressions. Be warned that special characters as e.g. [] need to be escaped or replaced by . Exclusion rules may be specified as well.

**Usage**

```r
FindVars(
 varnames,
 allnames = NULL,
 exact = FALSE,
 exclude = NA,
 casesensitive = TRUE,
 fixed = FALSE
)
```
Arguments

- `varnames` Vector of pattern to look for.
- `allnames` Vector of values to detect pattern in; by default, `colnames(rawdata)`.
- `exact` Partial matching or exact only (adding ^ and $)?
- `exclude` Vector of pattern to exclude from found names.
- `casesensitive` Logical if case is respected in matching (default FALSE: a<>A)
- `fixed` Logical, match as is, argument is passed to `grep()`.

Value

A list with index, names, backticked names, and symbols

Examples

```r
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars))
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars), exclude = "r")
rawdata <- mtcars
FindVars(varnames = c("^c", "g"))
```

formatP

Re-format p-values, avoiding rounding to 0

Description

`formatP` simplifies p-values by rounding to the maximum of p or a predefined level. Optionally < or = can be added, as well as symbols according to significance level.

Usage

```r
formatP(
 pIn,
 ndigits = 3,
 textout = TRUE,
 pretext = FALSE,
 mark = FALSE,
 german_num = FALSE
)
```

Arguments

- `pIn` A numeric vector or matrix with p-values.
- `ndigits` Number of digits (default=3).
- `textout` Cast output to character (default=TRUE)?
- `pretext` Should = or < be added before p (default=FALSE)?
- `mark` Should significance level be added after p (default=FALSE)?
- `german_num` change dot (default) to comma?
ggcormat

**Value**
vector or matrix (depending on type of `pIn`) with type character (default) or numeric, depending on
parameter `textout`

**Examples**

```r
formatP(0.012345)
formatP(0.012345, ndigits = 4)
formatP(0.000122345, ndigits = 3, pretext = TRUE)
```

---

**ggcormat**

*Print graphical representation of a correlation matrix.*

**Description**
Print graphical representation of a correlation matrix.

**Usage**

```r
ggcormat(
 cor_mat,
 p_mat = NULL,
 method = "Correlation",
 title = "",
 maxpoint = 2.1,
 textsize = 5,
 axistextsize = 2,
 titlesize = 3,
 breaklabels = NULL,
 lower_only = TRUE,
 .low = "blue3",
 .high = "red2",
 .legendtitle = NULL
)
```

**Arguments**

- `cor_mat` correlation matrix as produced by `cor`.
- `p_mat` Optional matrix of p-values; if provided, this is used to define size of dots rather than absolute correlation.
- `method` text specifying type of correlation.
- `title` plot title.
- `maxpoint` maximum for `scale_size_manual`, may need adjustment depending on `plotsize`.
- `textsize` for `theme_text`.
- `axistextsize` relative text size for axes.
titlesize as you already guessed, relative text size for title.
breaklabels currently not used, intended for str_wrap.
lower_only should only lower triangle be plotted?
.low Color for heatmap.
.high Color for heatmap.
.legendtitle Optional name for color legend.

Value
A ggplot object, allowing further styling.

Examples
coeff_pvalues <- cortestR(mtcars[, c("wt", "mpg", "qsec", "hp")],
split = TRUE, sign_symbol = FALSE)
# focus on coefficients:
ggcormat(cor_mat = coeff_pvalues$corout, maxpoint = 5)
# size take from p-value:
ggcormat(
  cor_mat = coeff_pvalues$corout,
  p_mat = coeff_pvalues$pout, maxpoint = 5
)

---

glmCI

Confidence interval for generalized linear models

Description
glmCI computes and formats of CIs for glm.

Usage
glmCI(model, min = .01, max = 100, cisep = \U000022ef, ndigit=2)

Arguments

  model Output from glm.
  min, max Lower and upper limits for CIs, usefull for extremely wide CIs.
  cisep Separator between CI values.
  ndigit rounding level.

Value
A list with coefficient, CIs, and pasted coef([CIs]).
Examples

```r
glm_out <- glm(am ~ mpg, family = binomial, data = mtcars)
glmCI(glm_out)
```

---

### ksnormal

**Kolmogorov-Smirnov-Test against Normal distribution**

**Description**

ksnormal is a convenience function around `ks.test`, testing against Normal distribution

**Usage**

```r
ksnormal(x)
```

**Arguments**

- `x` Vector of data to test.

**Value**

- p.value from `ks.test`.

**Examples**

```r
original ks.test:
ks.test(
 x = mtcars$wt, pnorm, mean = mean(mtcars$wt, na.rm = TRUE),
 sd = sd(mtcars$wt, na.rm = TRUE)
)
wrapped version:
ksnormal(x = mtcars$wt)
```

---

### logrange_1

**Predefined sets of labels for plots with log-scaled axes**

**Description**

logrange_1 returns a vector for log-labels at .1, 1, 100, 1000 ...
Usage

logrange_1
logrange_5
logrange_123456789
logrange_12357
logrange_15

Format

An object of class numeric of length 41.
An object of class numeric of length 738.
An object of class numeric of length 369.
An object of class numeric of length 205.
An object of class numeric of length 82.

Value

numeric vector
numeric vector

Functions

• logrange_5: vector for log-labels at 1.0, 1.5, 2.0, 2.5 ... 10, 15, 20, 25 ...
• logrange_123456789: vector for log-labels at 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100 ...
• logrange_12357: vector for log-labels at 1 ,2, 3, 5, 7, 10, 20 ,30, 50, 70 ...
• logrange_15: vector for log-labels at 1, 5, 10, 50 ...

Examples

```r
ggplot(mtcars, aes(wt, mpg)) +
 geom_point() +
 scale_y_log10(breaks = logrange_5)
ggplot(mtcars, aes(wt, mpg)) +
 geom_point() +
 scale_y_log10(breaks = logrange_123456789)
```
**markSign**  
*Convert significance levels to symbols*

**Description**

`markSign` returns the symbol associated with a significance level.

**Usage**

```r
markSign(SignIn, plabel = c("n.s.", "+", "+", "**", "***"))
```

**Arguments**

- **SignIn:** A single p-value.
- **plabel:** A translation table, predefined with the usual symbols.

**Value**

factor with label as defined in `plabel`.

**Examples**

```r
markSign(0.012)
```

---

**meansd**  
*Compute mean and sd and put together with the ± symbol.*

**Description**

Compute mean and sd and put together with the ± symbol.

**Usage**

```r
meansd(
 x,
 roundDig = 2,
 drop0 = FALSE,
 groupvar = NULL,
 range = FALSE,
 rangesep = " ",
 add_n = FALSE,
 .german = FALSE
)
```
Arguments

- **x**
  - Data for computation.
- **roundDig**
  - Number of relevant digits for roundR.
- **drop0**
  - Should trailing zeros be dropped?
- **groupvar**
  - Optional grouping variable for subgroups.
- **range**
  - Should min and max be included in output?
- **rangesep**
  - How should min/max be separated from mean±sd?
- **add_n**
  - Should n be included in output?
- **.german**
  - Logical, should "." and "," be used as bigmark and decimal?

Value

character vector with mean ± SD, rounded to desired precision

Examples

```r
basic usage of meansd
meansd(x = mtcars$wt)
with additional options
meansd(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
```

meanse

*Compute mean and standard error of mean and put together with the ± symbol.*

Description

meanse computes SEM based on Standard Deviation/square root(n)

Usage

```r
meanse(x, mult = 1, roundDig = 2, drop0 = FALSE)
```

Arguments

- **x**
  - Data for computation.
- **mult**
  - Multiplier for SEM, default 1, can be set to e.g. 2 or 1.96 to create confidence intervals.
- **roundDig**
  - Number of relevant digits for roundR.
- **drop0**
  - Should trailing zeros be dropped?

Value

character vector with mean ± SEM, rounded to desired precision
### median_cl_boot

**Examples**

```r
basic usage of meanse
meanse(x = mtcars$wt)
```

**Description**

`median_cl_boot` computes lower and upper confidence limits for the estimated median, based on bootstrapping.

**Usage**

```r
median_cl_boot(x, conf = 0.95, type = "basic", nrepl = 10^3)
```

**Arguments**

- `x` : Data for computation.
- `conf` : confidence interval with default 95%.
- `type` : type for function boot.ci.
- `nrepl` : number of bootstrap replications, defaults to 1000.

**Value**

A tibble with one row and three columns: Median, CIlow, CIhigh.

**Examples**

```r
basic usage of meanse
median_cl_boot(x = mtcars$wt)
```

### median_quart

**Description**

Compute median and quartiles and put together.

```r
basic usage of meanse
median_quart(x = mtcars$wt)
```
median_quart

Usage

median_quart(
  x,
  nround = NULL,
  probs = c(0.25, 0.5, 0.75),
  qtype = 8,
  roundDig = 2,
  drop0 = FALSE,
  groupvar = NULL,
  range = FALSE,
  rangesep = " ",
  rangearrow = " -> ",
  prettynum = FALSE,
  .german = FALSE,
  add_n = FALSE
)

Arguments

  x          Data for computation.
  nround     Number of digits for fixed round.
  probs      Quantiles to compute.
  qtype      Type of quantiles.
  roundDig   Number of relevant digits for roundR.
  drop0      Should trailing zeros be dropped?
  groupvar   Optional grouping variable for subgroups.
  range      Should min and max be included in output?
  rangesep   How should min/max be separated from mean+-sd?
  rangearrow What is put between min -> max?
  prettynum  logical, apply prettyNum to results?
  .german    logical, should "." and "," be used as bigmark and decimal?
  add_n      Should n be included in output?

Value

  character vector with median [1stQuartile/3rdQuartile], rounded to desired precision

Examples

  # basic usage of median_quart
  median_quart(x = mtcars$wt)
  # with additional options
  median_quart(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
  data(faketrial)
  median_quart(x=faketrial$`Biomarker 1 [units]`,groupvar = faketrial$Treatment)
**Pairwise Fisher’s exact tests**

**Description**

`pairwise_fisher_test` calculates pairwise comparisons between group levels with corrections for multiple testing.

**Usage**

```r
pairwise_fisher_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1],
 ref = FALSE
)
```

**Arguments**

- **dep_var**: dependent variable, containing the data.
- **indep_var**: independent variable, should be factor or coercible.
- **adjmethod**: method for adjusting p values (see `p.adjust`).
- **plevel**: threshold for significance.
- **symbols**: predefined as b,c, d...: provides footnotes to mark group differences, e.g. b means different from group 2
- **ref**: is the 1st subgroup the reference (like in Dunnett test)?

**Value**

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

**Examples**

```r
All pairwise comparisons
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear)
Only comparison against reference gear=3
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear, ref = TRUE)
```
pairwise_ordcat_test  

Pairwise comparison for ordinal categories

Description

pairwise_ordcat_test calculates pairwise comparisons for ordinal categories between all group levels with corrections for multiple testing.

Usage

```r
pairwise_ordcat_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1],
 ref = FALSE,
 cmh = TRUE
)
```

Arguments

- `dep_var`: dependent variable, containing the data
- `indep_var`: independent variable, should be factor
- `adjmethod`: method for adjusting p values (see `p.adjust`)
- `plevel`: threshold for significance
- `symbols`: predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2
- `ref`: is the 1st subgroup the reference (like in Dunnett test)
- `cmh`: Should Cochran-Mantel-Haenszel test (`cmh_test`) be used for testing? If false, the linear-by-linear association test (`lbl_test`) is applied.

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

Examples

```r
All pairwise comparisons
mtcars2 <- mutate(mtcars, cyl = factor(cyl, ordered = TRUE))
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear)
Only comparison against reference gear=3
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear, ref = TRUE)
```
pairwise_t_test

Extended pairwise t-test

Description

pairwise_t_test calculate pairwise comparisons between group levels with corrections for multiple testing based on pairwise.t.test

Usage

pairwise_t_test(
  dep_var,
  indep_var,
  adjmethod = "fdr",
  plevel = 0.05,
  symbols = letters[-1]
)

Arguments

  dep_var          dependent variable, containing the data
  indep_var        independent variable, should be factor
  adjmethod        method for adjusting p values (see p.adjust)
  plevel           threshold for significance
  symbols          predefined as b, c, d...; provides footnotes to mark group differences, e.g. b means different from group 2

Value

A list with method output of pairwise.t.test, matrix of p-values, and character vector with significance indicators.

Examples

pairwise_t_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
Description

pairwise_wilcox_test calculates pairwise comparisons on ordinal data between all group levels with corrections for multiple testing based on wilcox_test from package 'coin'.

Usage

pairwise_wilcox_test(
  dep_var,
  indep_var,
  strat_var = NA,
  adjmethod = "fdr",
  distr = "exact",
  plevel = 0.05,
  symbols = letters[-1],
  sep = ""
)

Arguments

dep_var dependent variable, containing the data.
indep_var independent variable, should be factor.
strat_var optional factor for stratification.
adjmethod method for adjusting p values (see p.adjust)
distr Computation of p-values, see wilcox_test.
plevel threshold for significance.
symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2.
sep text between statistics and range or other elements.

Value

A list with matrix of p-values and character vector with significance indicators.

Examples

pairwise_wilcox_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
pdf_kable

Enhanced kable with latex

Description

pdf_kable formats tibbles/df's for markdown

Usage

pdf_kable(
  .input,
  .width1 = 6,
  twidth = 14,
  tposition = "left",
  innercaption = NULL,
  caption = "",
  foot = NULL,
  escape = TRUE
)

Arguments

- .input: table to print
- width1: Width of 1st column, default 6.
- twidth: Default 14
- tposition: Default left
- innercaption: subheader
- caption: header
- foot: footnote
- escape: see kable

Value

A character vector of the table source code.
Enhanced kable with definable number of rows/columns for splitting

Description

print_kable formats and prints tibbles/df’s in markdown with splitting into sub-tables with repeated caption and header.

Usage

print_kable(t, nrows = 30, caption = "", ncols = 100, ...)

Arguments

t  table to print.
nrows  number of rows (30) before splitting.
caption  header.
ncols  number of columns (100) before splitting.
...  Further arguments passed to kable.

Value

No return value, called for side effects.

Automatic rounding to a reasonable length, based on largest number

Description

roundR takes a vector or matrix of numbers and returns rounded values with selected precision and various formatting options.

Usage

roundR(
  roundin,
  level = 2,
  smooth = FALSE,
  textout = TRUE,
  drop0 = FALSE,
  .german = FALSE,
  .bigmark = FALSE
)

Arguments

roundin A vector or matrix of numbers.
level A number specifying number of relevant digits to keep.
smooth A logical specifying if you want rounding before the dot (e.g. 12345 to 12300).
textout A logical if output is converted to text.
drop0 A logical if trailing zeros should be dropped.
.german A logical if german numbers should be reported.
.bigmark A logical if big.mark is to be shown, mark itself depends on parameter .german.

Value

vector of type character (default) or numeric, depending on parameter textout.

Examples

roundR(1.23456, level = 3)
roundR(1.23456, level = 3, .german = TRUE)
roundR(1234.56, level = 2, smooth = TRUE)

SEM Standard Error of Mean.

Description

SEM computes standard error of mean.

Usage

SEM(x)

Arguments

x Data for computation.

Value

numeric vector with SEM.

Examples

SEM(x = mtcars$wt)
se_median

Description

*median_cl_boot* is based on **mad/square root(n)**

Usage

```
se_median(x)
```

Arguments

- `x`: Data for computation.

Value

numeric vector with SE Median.

Examples

```
basic usage of meanse
se_median(x = mtcars$wt)
```

tab.search

Search within data.frame or tibble

Description

*tab.search* searches for pattern within a data-frame or tibble, returning column(s) and row(s)

Usage

```
tab.search(searchdata = rawdata, pattern, find.all = T, names.only = FALSE)
```

Arguments

- `searchdata`: table to search in, predefined as rawdata
- `pattern`: regex, for exact matches add `^findme$`
- `find.all`: return all row indices or only 1st per column, default=TRUE
- `names.only`: return only vector of colnames rather than list with names and rows, default=FALSE

Value

A list with numeric vectors for each column giving row numbers of matched elements
**t_var_test**

*Independent sample t-test with test for equal variance*

**Description**

t_var_test tests for equal variance based on var.test and calls t.test, setting the option var.equal accordingly.

**Usage**

t_var_test(data, formula, cutoff = 0.05)

**Arguments**

data: Tibble or data_frame.
formula: Formula object with dependent and independent variable.
cutoff: is significance threshold for equal variances.

**Value**

A list from t.test

**Examples**

t_var_test(mtcars, wt ~ am)
# may be used in pipes:
mtcars %>% t_var_test(wt ~ am)

**var_coeff**

*Compute coefficient of variance.*

**Description**

var_coeff computes relative variability as standard deviation/mean *100

**Usage**

var_coeff(x)

**Arguments**

x: Data for computation.

**Value**

numeric vector with coefficient of variance.
Examples

```r
var_coeff(x = mtcars$wt)
```
Index

* datasets
  faketrial, 11
  logrange_1, 15

bt, 2

cat_desc_stats, 3
cmh_test, 22
cn, 4
compare2numvars, 5
compare2qualvars, 6
compare_n_numvars, 7
compare_n_qualvars, 8
cor.test, 10
cortestR, 10

faketrial, 11
FindVars, 11
fisher.test, 6
formatP, 5, 7, 9, 12

ggcormat, 13
glm, 14
glmCI, 14
grep(), 12

kable, 26
ks.test, 15
knormal, 15

lbl_test, 22
logrange_1, 15
logrange_123456789 (logrange_1), 15
logrange_12357 (logrange_1), 15
logrange_15 (logrange_1), 15
logrange_5 (logrange_1), 15

mad, 28
markSign, 17
meansd, 17
meanse, 18

median_cl_boot, 19
median_quart, 19

p.adjust, 21–24
pairwise.t.test, 23
pairwise_fisher_test, 21
pairwise_ordcat_test, 22
pairwise_t_test, 23
pairwise_wilcox_test, 24
pdf_kable, 25
print_kable, 26

roundR, 26

se_median, 28
SEM, 27

t.test, 29
t_var_test, 5, 29

units, 11

var.test, 29
var_coeff, 29

wilcox.test, 5
wilcox_test, 24