Package ‘xspliner’

September 25, 2019

Title Assisted Model Building, using Surrogate Black-Box Models to Train Interpretable Spline Based Additive Models

Version 0.0.4

Description Builds generalized linear model with automatic data transformation.
The ‘xspliner’ helps to build simple, interpretable models that inherits informations provided by more complicated ones.
The resulting model may be treated as explanation of provided black box, that was supplied prior to the algorithm.

Depends R (>= 3.0)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports stats, pdp, dplyr, ggplot2, mgcv, magrittr, purrr, tidyr, pROC
(>= 1.15.3)

Suggests ALEPlot, factorMerger, testthat, knitr, rmarkdown,
ResourceSelection, randomForest, e1071, caret, breakDown,
DALEX, xgboost, gridExtra, grid, ISLR

VignetteBuilder knitr

URL https://ModelOriented.github.io/xspliner/

BugReports https://github.com/ModelOriented/xspliner/issues

NeedsCompilation no

Author Krystian Igras [aut, cre],
Przemyslaw Biecek [aut, ths]

Maintainer Krystian Igras <krystian8207@gmail.com>

Repository CRAN

Date/Publication 2019-09-25 20:20:02 UTC
R topics documented:

xspliner-package ... 2
approx_with_spline ... 2
build_xspliner .. 3
log_msg .. 4
plot.xspliner .. 4
plot_model_comparison ... 5
plot_variable_transition .. 6
predict.xspliner .. 8
print.xspliner ... 8
stats ... 9
summary.xspliner .. 9
transition .. 11
xf_opts_default .. 12
xspline .. 12

Index 15

xspliner-package Easy way for approximating data with splines.

Description

Easy way for approximating data with splines.

approx_with_spline Approximate spline on data

Description

It approximates data with spline function by fitting GAM model.

Usage

approx_with_spline(effect_data, response, predictor,
 env = parent.frame(), ...)

approx_with_monotonic_spline(effect_data, response, predictor,
 env = parent.frame(), monotonic, ...)
build_xspliner

Arguments

- **effect_data**: Black box response data, for example pdp curve.
- **response**: Name of response value from effect_data.
- **predictor**: Name of predictor value from effect_data.
- **env**: Formula environment that should be used for fitting gam model.
- **...**: Other arguments passed to s function.
- **monotonic**: Possible options "up", "down" and "auto. If up the spline is increasing, when down decreasing.

Value

Object of class "gam". See [gamObject](#).

Examples

```r
x <- sort(rnorm(20, 5, 5))
y <- rnorm(20, 2, 2)
env <- new.env()
approx_with_spline(data.frame(x = x, y = y), "y", "x", env)

approx_with_monotonic_spline(data.frame(x = x, y = y), "y", "x", env, "up")
```

build_xspliner
Helper function for building GLM object with transformed variables.

Description

Helper function for building GLM object with transformed variables.

Usage

```r
build_xspliner(formula, model, data, xf_opts = xf_opts_default,
                xs_opts = xs_opts_default, link = "identity", family = "gaussian",
                env = parent.frame(), compare_stat = aic, control, ...)
```

Arguments

- **formula**: xspliner-specific formula object. Check vignette("xspliner") for more details.
- **model**: Predictive model. Basic model used for extracting predictors transformation.
- **data**: Training data of model.
- **xf_opts**: Formula parameters used for factor variable transformations inherited from factorMerger package.
- **xs_opts**: Predictive model response method and approximation parameters used for quantitative.
link Link function that should be used in final model. The passed is used when cannot be extracted from model. By default 'identity'. See family for possibilities.

family Family of response variable that should be used in final model. The passed is used when cannot be extracted from model. By default 'gaussian'. See family for possibilities.

env Environment in which optional variables passed into parameters are stored.

compare_stat Function of linear model (lm function output). Statistic that measures if linear model is better that transformed one. See stats.

ccontrol Fitting settings. See glm.control.

... Another parameters passed from chosen method. Not used.

log_msg Helper function to print out log messages

Description
Helper function to print out log messages

Usage
log_msg(message)

Arguments
message Message that should be printed to R console

plot.xspliner Plot method for 'xspliner' model

Description
The method provides all plotting methods offered by 'xspliner' package. See plot_variable_transition and plot_model_comparison for more details.

Usage
S3 method for class 'xspliner'
plot(x, variable_names = NULL, model = NULL,
 plot_response = TRUE, plot_approx = TRUE, data = NULL,
 plot_data = FALSE, plot_deriv = FALSE, n_plots = 6,
 sort_by = NULL, use_coeff = TRUE, compare_with = list(),
 prediction_funs = list(function(object, newdata) predict(object, newdata)), ...)

plot_model_comparison

Description

The function plots models comparison based on them predictions.

Usage

plot_model_comparison(x, model, data, compare_with = list(), prediction_funs = list(function(object, newdata) predict(object, newdata)), sort_by = NULL)

Arguments

x Object of class ‘xspliner’
model Base model that xspliner is based on.
data Dataset on which predictions should be compared.
compare_with Named list. Other models that should be compared with xspliner and model.
prediction_funs Prediction functions that should be used in model comparison.
sort_by When comparing models determines according to which model should observations be ordered.
Examples

```r
iris_data <- droplevels(iris[iris$Species != "setosa", ])
library(e1071)
library(randomForest)
library(xspliner)

# Build SVM model, random forest model and surrogate one constructed on top od SVM
model_svm <- svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris_data, probability = TRUE)
model_rf <- randomForest(
  Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris_data
)
model_xs <- xspline(
  Species ~ xs(Sepal.Length) + xs(Sepal.Width) + xs(Petal.Length) + xs(Petal.Width),
  model = model_svm
)

# Prepare prediction functions returning label probability
prob_svm <- function(object, newdata)
  attr(predict(object, newdata = newdata, probability = TRUE), "probabilities")[, 2]
prob_rf <- function(object, newdata)
  predict(object, newdata = newdata, type = "prob")[, 2]
prob_xs <- function(object, newdata)
  predict(object, newdata = newdata, type = "response")

# Plotting predictions for original SVM and surrogate model on training data
plot_model_comparison(model_xs, model_svm, data = iris_data,
prediction_funs = list(xs = prob_xs, svm = prob_svm)
)

# Plotting predictions for original SVM, surrogate model and random forest on training data
plot_model_comparison(model_xs, model_svm, data = iris_data,
  compare_with = list(rf = model_rf),
prediction_funs = list(xs = prob_xs, svm = prob_svm, rf = prob_rf)
)

# Sorting values according to SVM predictions
plot_model_comparison(model_xs, model_svm, data = iris_data,
  compare_with = list(rf = model_rf),
prediction_funs = list(xs = prob_xs, svm = prob_svm, rf = prob_rf),
  sort_by = "svm"
)
```

plot_variable_transition

Plot variable profile
Description

The function plots variable profile. In case of quantitative variable it plots original transition function and its spline approximation. The function provides possibility to plot data points and transition derivative as well. In case of qualitative variable it plots merging path for variable levels. When no variable is specified it plots transitions for first n_plots variables.

Usage

plot_variable_transition(x, variable_names = NULL,
 plot_response = TRUE, plot_approx = TRUE, data = NULL,
 plot_data = FALSE, plot_deriv = FALSE, n_plots = 6,
 use_coeff = TRUE)

Arguments

x Object of class 'xspliner'.
variable_names Names of predictors which transitions should be plotted.
plot_response If TRUE black box model response is drawn.
plot_approx If TRUE black box model response approximation is drawn.
data Training data used for building x model. Required for plot_data option.
plot_data If TRUE raw data is drawn.
plot_deriv If TRUE derivative of approximation is showed on plot.
n_plots Threshold for number of plots when plotting all variables.
use_coeff If TRUE both PDP function and its approximation is scaled with corresponding surrogate model coefficient.

Examples

library(randomForest)
set.seed(1)
data <- iris
regression model
iris.rf <- randomForest(Petal.Width ~ Sepal.Length + Petal.Length + Species, data = data)
iris.xs <- xspline(iris.rf)
plot Sepal.Length transition
plot_variable_transition(iris.xs, "Sepal.Length")
plot Species transition
plot_variable_transition(iris.xs, "Species")
plot all transitions
plot_variable_transition(iris.xs)
plot Sepal.Length transition, its derivative and data points
plot_variable_transition(iris.xs, "Sepal.Length", data = data, plot_data = TRUE, plot_deriv = TRUE)
predict.xspliner
Predict xspliner method

Description

Predict xspliner method

Usage

```r
## S3 method for class 'xspliner'
predict(object, newdata, ...)
```

Arguments

- `object` Object of class `xspliner`.
- `newdata` Data that should be prediction based on.
- `...` Another arguments passed into `predict.glm` method.

print.xspliner
Print method for xspliner object

Description

Print method for xspliner object

Usage

```r
## S3 method for class 'xspliner'
print(x, predictor, ...)
```

Arguments

- `x` xspliner object
- `predictor` predictor for xspliner model formula
- `...` Another arguments passed into model specific print method.
Stats

Statistics used for better linear model selection

Description

Used as compare_stat parameter in xspline method. Each function has attribute "higher-better". If "higher-better" is TRUE then model with higher statistic value is treated as better one.

Usage

```r
aic(glm_model)

hoslem(glm_model)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>glm_model</td>
<td>Linear model - glm function output.</td>
</tr>
</tbody>
</table>

Summary.xspliner

Summary method for xspliner object

Description

Summary method for xspliner object

Usage

```r
## S3 method for class 'xspliner'
summary(object, predictor, ..., model = NULL, newdata = NULL, prediction_funs = list(function(object, newdata) predict(object, newdata)), env = parent.frame())
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>xspliner object</td>
</tr>
<tr>
<td>predictor</td>
<td>predictor for xspliner model formula</td>
</tr>
<tr>
<td>...</td>
<td>Another arguments passed into model specific method.</td>
</tr>
<tr>
<td>model</td>
<td>Original black box model. Providing enables models comparison. See details.</td>
</tr>
<tr>
<td>newdata</td>
<td>Data used for models comparison. By default training data used for black box build.</td>
</tr>
<tr>
<td>prediction_funs</td>
<td>List of prediction functions for surrogate and black box model. For classification problem, different statistics are displayed based on predictions type. See details section for more info.</td>
</tr>
<tr>
<td>env</td>
<td>Environment in which newdata is stored (if not provided as parameter).</td>
</tr>
</tbody>
</table>
Details

The summary output depends strictly on data provided to it.

Standard output for providing only xspliner model (object parameter) return default glm::summary output.

Providing both xspliner model and predictor returns summary details for selected variable. The following points describe the rules:

- When variable was quantitative and transformed with fitted spline, the output contains approximation details.
- When variable was qualitative and transformed, factor matching is displayed.
- When variable was not transformed, glm::summary output is displayed for the model.

If both object parameter and model (original black box) was provided, the summary displays comparison of original and surrogate model. The following points describe the rules (y_s and y_o are predictions of surrogate and original model respectively on provided dataset). When comparing statistic is close to 1, this means surrogate model is similar to black box one (according to this statistic).

For regression models:

- 1 - Maximum predictions normed-difference

 $$1 - \frac{\max_{i=1}^{n}|y^{(i)}_s - y^{(i)}_o|}{\max_{i=1}^{n} y^{(i)}_o - \min_{i=1}^{n} y^{(i)}_o}$$

 $$1 - \frac{\sum_{i=1}^{n}(y^{(i)}_s - y^{(i)}_o)^2}{\sum_{i=1}^{n}(y^{(i)}_o - \bar{y}_o)^2}$$

- Mean square errors for each model.

For classification models the result depends on prediction type. When predictions are classified levels:

- Mean predictions similarity

 $$\frac{1}{n} \sum_{i=1}^{n} I_{y^{(i)}_s = y^{(i)}_o}$$

- Accuracies for each models.

When predictions are response probabilities:

- R^2 as for regression model.

- 1 - Maximum ROC difference

 $$1 - \max_{t \in T} ||ROC_o(t) - ROC_s(t)||_2$$

 Calculates maximum of euclidean distances between ROC points for specified thresholds set T. In this implementation T is union of breakpoints for each ROC curve.

- 1 - Mean ROC difference Above version using mean instead of max measure.
Examples

```r
library(randomForest)
set.seed(1)
data <- iris
# regression model
iris.rf <- randomForest(Petal.Width ~ Sepal.Length + Petal.Length + Species, data = data)
iris.xs <- xspline(iris.rf)
# Summary of quantitative variable transition
summary(iris.xs, "Sepal.Length")
# Summary of qualitative variable transition
summary(iris.xs, "Species")
# Comparing surrogate with original model (regression)
summary(iris.xs, model = iris.rf, newdata = data)
```

Classification model

transition

Extract variable transformation from xspliner

Description

Extract variable transformation from xspliner

Usage

```r
transition(model, ...)
```

Arguments

- `model` xspliner model
- `...` Other parameters passed to method. Currently not used.
- `predictor` variable name for which transformation should be extracted
- `type` If 'function' then transformation function is extracted. For 'base' there is sourced object on which transformation was built - in case of quantitative variable GAM model, for qualitative factorMerger.
xf_opts_default Default parameters for transition methods

Description
While constructing formula interpreted by xspliner package, some parameters may be specified within xs(..) or xf(..) symbols. Below are default parameters. See details in vignette("xspliner")

Usage
xf_opts_default
xs_opts_default

Format
An object of class list of length 2.

xspline Builds predictive model based GLM.

Description
The method provides main functionality on building GLM models with automatic variables transformation. The transformations are based on specified single variable responses for selected black-box model. See details in vignette("xspliner").

Usage
xspline(object, ...)
model_surrogate_xspliner(object, ...)

Default S3 method:
x spline(object, lhs = NULL, response = NULL,
predictors = NULL, data = NULL, form = "additive", bare = NULL,
env = parent.frame(), ...)

S3 method for class 'formula'
x spline(object, model, data = NULL,
consider = "specials", env = parent.frame(), ...)

S3 method for class 'explainer'
x spline(object, env = parent.frame(), ...)

xspline

model_surrogate_xspliner
Arguments

- `object`: Predictive model, formula or explainer (see DALEX) object.
- `...`: Other arguments passed to xspline methods or `build_xspliner`.
- `lhs`: Left-hand side of model formula. Can be transformed response.
- `response`: Name of response variable of model.
- `predictors`: Predictor values that should be used in final model.
- `data`: Training data of model.
- `form`: Can be 'additive' (default) or 'multiplicative'. Specifies formula form in final model.
- `bare`: Variable names that mustn’t be transformed in final model.
- `env`: Environment in which optional variables passed into parameters are stored. Variables transformation. See vignette("xspliner") for details.
- `model`: When object is formula - predictive model. Basic model used for extracting predictors transformation.
- `consider`: One of c("specials", "all"). If "specials", only components with xs or xf call are considered in transition.

Details

`model_surrogate_xspliner` is a wrapper of xspline method to assure consistency with https://github.com/ModelOriented/DrWhy

tools

Value

GLM object of class 'xspliner'.

Examples

```r
# preparing blackbox model
library(randomForest)
rf_iris <- randomForest(
Petal.Width ~ Sepal.Length + Petal.Length + Species,
data = iris)

# formula based xspliner
xs_iris <- xspline(
Petal.Width ~ xs(Sepal.Length) + xs(Petal.Length) + xf(Species),
model = rf_iris)
summary(xs_iris)
plot(xs_iris, "Sepal.Length")

# passing just the model
xs_iris <- xspline(rf_iris)
summary(xs_iris)
plot(xs_iris, "Sepal.Length")

# using DALEX
```
library(DALEX)
xs_iris_explainer <- explain(rf_iris)
xs_iris <- xspline(rf_iris)
summary(xs_iris)
plot(xs_iris, "Sepal.Length")
Index

Topic datasets
- `xf_opts_default`, 12

- `aic (stats)`, 9
- `approx_with_monotonic_spline`
 - `(approx_with_spline), 2`
- `approx_with_spline`, 2
- `build_xspliner, 3, 13`
- `family, 4`
- `gamObject, 3`
- `glm.control, 4`
- `hoslem (stats), 9`
- `log_msg, 4`
- `model_surrogate_xspliner (xspline), 12`
- `plot.xspliner, 4`
- `plot_model_comparison, 4, 5`
- `plot_variable_transition, 4, 6`
- `predict.glm, 8`
- `predict.xspliner, 8`
- `print.xspliner, 8`

- `s, 3`
- `stats, 4, 9`
- `summary.xspliner, 9`

- `transition, 11`

- `xf_opts_default, 12`
- `xs_opts_default (xf_opts_default), 12`
- `xspline, 12`
- `xspliner-package, 2`