Package ‘zoid’

February 9, 2022

Title Bayesian Zero-and-One Inflated Dirichlet Regression Modelling

Version 1.1.0

Description Fits Dirichlet regression and zero-and-one inflated Dirichlet regression with Bayesian methods implemented in Stan. These models are sometimes referred to as trinomial mixture models; covariates and overdispersion can optionally be included.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Biarch true

URL https://nwfsc-cb.github.io/zoid/

BugReports https://github.com/nwfsc-cb/zoid/issues

Depends R (>= 3.4.0)

Imports methods, gtools, compositions, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.1.1)

Suggests testthat, knitr, rmarkdown

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

VignetteBuilder knitr

NeedsCompilation yes

Author Eric J. Ward [aut, cre] (<https://orcid.org/0000-0002-4359-0296>), Alexander J. Jensen [aut] (<https://orcid.org/0000-0002-2911-8884>), Ryan P. Kelly [aut] (<https://orcid.org/0000-0001-5037-2441>), Andrew O. Shelton [aut] (<https://orcid.org/0000-0002-8045-6141>), William H. Satterthwaite [aut] (<https://orcid.org/0000-0002-0436-7390>), Eric C. Anderson [aut] (<https://orcid.org/0000-0003-1326-0840>)

Maintainer Eric J. Ward <eric.ward@noaa.gov>
Repository CRAN

Date/Publication 2022-02-09 17:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>zoid-package</td>
<td>2</td>
</tr>
<tr>
<td>broken_stick</td>
<td>2</td>
</tr>
<tr>
<td>chinook</td>
<td>3</td>
</tr>
<tr>
<td>coddiet</td>
<td>4</td>
</tr>
<tr>
<td>fit_prior</td>
<td>4</td>
</tr>
<tr>
<td>fit_zoid</td>
<td>5</td>
</tr>
<tr>
<td>get_fitted</td>
<td>6</td>
</tr>
<tr>
<td>get_pars</td>
<td>7</td>
</tr>
<tr>
<td>rmspe_calc</td>
<td>8</td>
</tr>
</tbody>
</table>

Index

9

zoid-package

The 'zoid' package.

Description

A DESCRIPTION OF THE PACKAGE

References

broken_stick

Random generation of datasets using the dirichlet broken stick method

Description

Random generation of datasets using the dirichlet broken stick method

Usage

```r
broken_stick(
  n_obs = 1000,
  n_groups = 10,
  ess_fraction = 1,
  tot_n = 100,
  p = NULL
)
```
Arguments

n_obs Number of observations (rows of data matrix to simulate). Defaults to 10
n_groups Number of categories for each observation (columns of data matrix). Defaults to 10
ess_fraction The effective sample size fraction, defaults to 1
tot_n The total sample size to simulate for each observation. This is approximate and the actual simulated sample size will be slightly smaller. Defaults to 100
p The stock proportions to simulate from, as a vector. Optional, and when not included, random draws from the dirichlet are used

Value

A 2-element list, whose 1st element X_obs is the simulated dataset, and whose 2nd element is the underlying vector of proportions p used to generate the data

Examples

y <- broken_stick(n_obs = 3, n_groups = 5, tot_n = 100)

add custom proportions
y <- broken_stick(
 n_obs = 3, n_groups = 5, tot_n = 100,
 p = c(0.1, 0.2, 0.3, 0.2, 0.2)
)

Description

Usage

chinook
Format

A data frame.

coddiet

Data from Magnussen, E. 2011. Food and feeding habits of cod (Gadus morhua) on the Faroe Bank. – ICES Journal of Marine Science, 68: 1909–1917. The data here are Table 3 from the paper, with sample proportions (columns w) multiplied by total weight to yield total grams (g) for each sample-diet item combination. Dashes have been replaced with 0s.

Description

Data from Magnussen, E. 2011. Food and feeding habits of cod (Gadus morhua) on the Faroe Bank. – ICES Journal of Marine Science, 68: 1909–1917. The data here are Table 3 from the paper, with sample proportions (columns w) multiplied by total weight to yield total grams (g) for each sample-diet item combination. Dashes have been replaced with 0s.

Usage

coddiet

Format

A data frame.

fit_prior

Find appropriate standard deviations for prior

Description

Find appropriate standard deviations for prior

Usage

`fit_prior(n_bins, n_draws = 10000, target = 1/n_bins, iterations = 5)`

Arguments

- `n_bins` Bins for the Dirichlet distribution
- `n_draws` Numbers of samples to use for doing calculation
- `target` The goal of the specified prior, e.g. 1 or 1/n_bins
- `iterations` to try, to ensure robust solution. Defaults to 5
fit_zoid

Value

A 3-element list consisting of sd (the approximate standard deviation in transformed space that gives a similar prior to that specified), value (the value of the root mean squared percent error function being minimized), and convergence (0 if convergence occurred, error code from optim() otherwise)

Examples

```r
# fit model with 3 components / alpha = 1
set.seed(123)
f <- fit_prior(n_bins = 3, n_draws = 1000, target = 1)
# fit model with 20 components / alpha = 1/20
f <- fit_prior(n_bins = 20, n_draws = 1000, target = 1 / 20)
```

fit_zoid Fit a trinomial mixture model with Stan

Description

Fit a trinomial mixture model that optionally includes covariates to estimate effects of factor or continuous variables on proportions.

Usage

```r
fit_zoid(
  formula = NULL,
  design_matrix,
  data_matrix,
  chains = 3,
  iter = 2000,
  warmup = floor(iter/2),
  overdispersion = FALSE,
  overdispersion_sd = 5,
  posterior_predict = FALSE,
  moment_match = FALSE,
  prior_sd = NA,
  ...
)
```

Arguments

- `formula` The model formula for the design matrix. Does not need to have a response specified. If =NULL, then the design matrix is ignored and all rows are treated as replicates
design_matrix A data frame, dimensioned as number of observations, and covariates in columns
data_matrix A matrix, with observations on rows and number of groups across columns
chains Number of mcmc chains, defaults to 3
iter Number of mcmc iterations, defaults to 2000
warmup Number iterations for mcmc warmup, defaults to 1/2 of the iterations
overdispersion Whether or not to include overdispersion parameter, defaults to FALSE
overdispersion_sd Prior standard deviation on 1/overdispersion parameter, Defaults to inv-Cauchy(0,5)
posterior_predict Whether or not to return draws from posterior predictive distribution (requires more memory)
moment_match Whether to do moment matching via loo::loo_moment_match(). This increases memory by adding all temporary parameters to be saved and returned
prior_sd Parameter to be passed in to use as standard deviation of the normal distribution in transformed space. If covariates are included this defaults to 1, but for models with single replicate, defaults to 1/n_bins.
... Any other arguments to pass to rstan::sampling().

Examples

y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
nrow = 3, byrow = TRUE)
fit a model with no covariates
fit <- fit_zoid(data_matrix = y)

fit a model with 1 factor
design <- data.frame("y" = c(1, 1, 1), "fac" = c("spring", "spring", "fall"))
fit <- fit_zoid(formula = ~fac, design_matrix = design, data_matrix = y)

get_fitted Extract estimates of predicted latent proportions.

Description

Extract point estimates of compositions from fitted model.

Usage

get_fitted(fitted_model, conf_int = 0.05)
get_pars

Arguments

fitted_model The fitted model returned as an rstan object from the call to zoid
conf_int Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters, with element mu (the predicted values in normal space). For predictions in transformed space, or overdispersion, see get_pars()

Examples

```r
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_fitted(fit)
```

get_pars Extract parameters from fitted model.

Description

Extract estimated parameters from fitted model.

Usage

get_pars(fitted_model, conf_int = 0.05)

Arguments

fitted_model The fitted model returned as an rstan object from the call to zoid
conf_int Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters. At minimum, this will include p (the estimated proportions) and betas (the predicted values in transformed space). For models with overdispersion, an extra element phi will also be returned, summarizing overdispersion. For predictions in normal space, see get_fitted()
Examples

```r
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_pars(fit)
```

rmspe_calc
Find appropriate prior for a given target distribution.

Description
Extract point estimates of compositions from fitted model.

Usage
```
rmspe_calc(par, n_bins, n_draws, target)
```

Arguments
- **par**: The parameter (standard deviation) to be searched over to find a Dirichlet equivalent
- **n_bins**: Bins for the Dirichlet distribution
- **n_draws**: Numbers of samples to use for doing calculation
- **target**: The goal of the specified prior, e.g. 1 or 1/n_bins
Index

* datasets
 chinook, 3
 coddiet, 4
 broken_stick, 2
 chinook, 3
 coddiet, 4
 fit_prior, 4
 fit_zoid, 5
 get_fitted, 6
 get_fitted(), 7
 get_pars, 7
 get_pars(), 7
 loo::loo_moment_match(), 6
 optim(), 5
 rmspe_calc, 8
 rstan::sampling(), 6
 trinomix (zoid-package), 2
 zoid-package, 2