Package ‘zoid’

November 15, 2021

Title Bayesian Zero-and-One Inflated Dirichlet Regression Modelling

Version 1.0.0

Description Fits Dirichlet regression and zero-and-one inflated Dirichlet regression with Bayesian methods implemented in Stan. These models are sometimes referred to as trinomial mixture models; covariates and overdispersion can optionally be included.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Biarch true

URL https://nwfsc-cb.github.io/zoid/

BugReports https://github.com/nwfsc-cb/zoid/issues

Depends R (>= 3.4.0)

Imports methods, gtools, compositions, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.1.1)

Suggests testthat, knitr, rmarkdown

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

VignetteBuilder knitr

NeedsCompilation yes

Author Eric J. Ward [aut, cre] (https://orcid.org/0000-0002-4359-0296),
 Alexander J. Jensen [aut] (https://orcid.org/0000-0002-2911-8884),
 Ryan P. Kelly [aut] (https://orcid.org/0000-0001-5037-2441),
 Andrew O. Shelton [aut] (https://orcid.org/0000-0002-8045-6141),
 William H. Satterthwaite [aut]
 (https://orcid.org/0000-0002-0436-7396)

Maintainer Eric J. Ward <eric.ward@noaa.gov>

Repository CRAN

Date/Publication 2021-11-15 08:10:02 UTC
R topics documented:

- `zoid-package` .. 2
- `broken_stick` .. 2
- `chinook` .. 3
- `coddiet` .. 4
- `fit_prior` .. 4
- `fit_zoid` .. 5
- `get_fitted` .. 7
- `get_pars` .. 7
- `rmspe_calc` .. 8

Index

`zoid-package` The 'zoid' package.

Description

A DESCRIPTION OF THE PACKAGE

References

`broken_stick` Random generation of datasets using the dirichlet broken stick method

Description

Random generation of datasets using the dirichlet broken stick method

Usage

```r
broken_stick(
  n_obs = 1000,
  n_groups = 10,
  ess_fraction = 1,
  tot_n = 100,
  p = NULL
)
```
Arguments

- **n_obs**: Number of observations (rows of data matrix to simulate). Defaults to 10
- **n_groups**: Number of categories for each observation (columns of data matrix). Defaults to 10
- **ess_fraction**: The effective sample size fraction, defaults to 1
- **tot_n**: The total sample size to simulate for each observation. This is approximate and the actual simulated sample size will be slightly smaller. Defaults to 100
- **p**: The stock proportions to simulate from, as a vector. Optional, and when not included, random draws from the dirichlet are used

Value

A 2-element list, whose 1st element `X_obs` is the simulated dataset, and whose 2nd element is the underlying vector of proportions `p` used to generate the data

Examples

```r
y <- broken_stick(n_obs = 3, n_groups = 5, tot_n = 100)

# add custom proportions
y <- broken_stick(
  n_obs = 3, n_groups = 5, tot_n = 100,
  p = c(0.1, 0.2, 0.3, 0.2, 0.2)
)
```

Description

Usage

- `chinook`
Data from Magnussen, E. 2011. Food and feeding habits of cod (Gadus morhua) on the Faroe Bank. – ICES Journal of Marine Science, 68: 1909–1917. The data here are Table 3 from the paper, with sample proportions (columns w) multiplied by total weight to yield total grams (g) for each sample-diet item combination. Dashes have been replaced with 0s.

Usage
coddiet

Format
A data frame.

Description
Find appropriate standard deviations for prior

Usage
fit_prior(n_bins, n_draws = 10000, target = 1/n_bins, iterations = 5)

Arguments
- n_bins: Bins for the Dirichlet distribution
- n_draws: Numbers of samples to use for doing calculation
- target: The goal of the specified prior, e.g. 1 or 1/n_bins
- iterations: to try, to ensure robust solution. Defaults to 5
Value

A 3-element list consisting of sd (the approximate standard deviation in transformed space that gives a similar prior to that specified), value (the value of the root mean squared percent error function being minimized), and convergence (0 if convergence occurred, error code from \texttt{optim()} otherwise)

Examples

```r
# fit model with 3 components / alpha = 1
set.seed(123)
f <- fit_prior(n_bins = 3, n_draws = 1000, target = 1)
# fit model with 20 components / alpha = 1/20
f <- fit_prior(n_bins = 20, n_draws = 1000, target = 1 / 20)
```

fit_zoid

Fit a Bayesian Dirichlet regression model, allowing for zero-and-one inflation, covariates, and overdispersion.

Description

Fit a Bayesian Dirichlet regression model that optionally includes covariates to estimate effects of factor or continuous variables on proportions.

Usage

```r
fit_zoid(
  formula = NULL,
  design_matrix,
  data_matrix,
  chains = 3,
  iter = 2000,
  warmup = floor(iter/2),
  overdispersion = FALSE,
  overdispersion_sd = 5,
  posterior_predict = FALSE,
  moment_match = FALSE,
  prior_match = FALSE,
  prior_sd = NA,
  ...
)
```

Arguments

- `formula`: The model formula for the design matrix. Does not need to have a response specified. If =\texttt{NULL}, then the design matrix is ignored and all rows are treated as replicates.
design_matrix A data frame, dimensioned as number of observations, and covariates in columns
data_matrix A matrix, with observations on rows and number of groups across columns
chains Number of mcmc chains, defaults to 3
iter Number of mcmc iterations, defaults to 2000
warmup Number iterations for mcmc warmup, defaults to 1/2 of the iterations
overdispersion Whether or not to include overdispersion parameter, defaults to FALSE
overdispersion_sd Prior standard deviation on 1/overdispersion parameter, Defaults to inv-Cauchy(0,5)
posterior_predict Whether or not to return draws from posterior predictive distribution (requires more memory)
moment_match Whether to do moment matching via loo::loo_moment_match(). This increases memory by adding all temporary parameters to be saved and returned
prior_sd Parameter to be passed in to use as standard deviation of the normal distribution in transformed space. If covariates are included this defaults to 1, but for models with single replicate, defaults to 1/n_bins.
... Any other arguments to pass to rstan::sampling().

Value

A list containing the fitted model and arguments and data used to fit the model. These include model (the fitted model object of class stanfit), par_names (the names of monitored parameters), design_matrix (the design matrix of covariates), data_matrix (the data matrix of responses), overdispersion (boolean, whether overdispersion was used), overdispersion_prior (the prior used for overdispersion), and posterior_predict (boolean, whether posterior prediction was done).

Examples

```r
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
nrow = 3, byrow = TRUE)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
# fit a model with 1 factor
design <- data.frame("y" = c(1, 1, 1), "fac" = c("spring", "spring", "fall"))
fit <- fit_zoid(formula = ~fac, design_matrix = design, data_matrix = y)
```
get_fitted

Extract estimates of predicted latent proportions.

Description

Extract point estimates of compositions from fitted model.

Usage

```r
get_fitted(fitted_model, conf_int = 0.05)
```

Arguments

- `fitted_model`: The fitted model returned as an rstan object from the call to zoid
- `conf_int`: Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters, with element `mu` (the predicted values in normal space). For predictions in transformed space, or overdispersion, see `get_pars()`

Examples

```r
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
            nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_fitted(fit)
```

get_pars

Extract parameters from fitted model.

Description

Extract estimated parameters from fitted model.

Usage

```r
get_pars(fitted_model, conf_int = 0.05)
```
Arguments

- **fitted_model**: The fitted model returned as an rstan object from the call to zoid_calc
- **conf_int**: Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters. At minimum, this will include p (the estimated proportions) and betas (the predicted values in transformed space). For models with overdispersion, an extra element phi will also be returned, summarizing overdispersion. For predictions in normal space, see `get_fitted()`

Examples

```r
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_pars(fit)
```

rmspe_calc

Description

Find appropriate prior for a given target distribution.

Usage

`rmspe_calc(par, n_bins, n_draws, target)`

Arguments

- **par**: The parameter (standard deviation) to be searched over to find a Dirichlet equivalent
- **n_bins**: Bins for the Dirichlet distribution
- **n_draws**: Numbers of samples to use for doing calculation
- **target**: The goal of the specified prior, e.g. 1 or 1/n_bins
Index

* datasets

 chinook, 3
 coddiet, 4

broken_stick, 2

chinquok, 3
 coddiet, 4

fit_prior, 4
 fit_zoid, 5

get_fitted, 7
 get_fitted(), 8

get_pars, 7
 get_pars(), 7

loo::loo_moment_match(), 6

optim(), 5

rmspe_calc, 8

rstan::sampling(), 6

trinomix (zoid-package), 2

zoid-package, 2